深层裂缝性气藏流固耦合下钻井液漏失规律数值研究

王志远, 刘徽, 孙宝江, 刘洪涛, 娄文强

王志远,刘徽,孙宝江,等. 深层裂缝性气藏流固耦合下钻井液漏失规律数值研究[J]. 石油钻探技术,2025,53(2):52−61. DOI: 10.11911/syztjs.2025031
引用本文: 王志远,刘徽,孙宝江,等. 深层裂缝性气藏流固耦合下钻井液漏失规律数值研究[J]. 石油钻探技术,2025,53(2):52−61. DOI: 10.11911/syztjs.2025031
WANG Zhiyuan, LIU Hui, SUN Baojiang, et al. Numerical study on drilling fluid lost circulation under fluid-solid coupling in deep fractured gas reservoir [J]. Petroleum Drilling Techniques, 2025, 53(2):52−61. DOI: 10.11911/syztjs.2025031
Citation: WANG Zhiyuan, LIU Hui, SUN Baojiang, et al. Numerical study on drilling fluid lost circulation under fluid-solid coupling in deep fractured gas reservoir [J]. Petroleum Drilling Techniques, 2025, 53(2):52−61. DOI: 10.11911/syztjs.2025031

深层裂缝性气藏流固耦合下钻井液漏失规律数值研究

基金项目: 国家自然科学基金基础科学中心项目“超深特深层油气钻采流动调控”(编号:52288101),国家自然科学基金重点项目“超深气井生产管柱泄漏精准识别与压力管控”(编号:52434002),山东省重大科技创新工程项目“深水复杂钻井多相流动模拟关键技术与监测装备”(编号:2022CXGC020407)联合资助。
详细信息
    作者简介:

    王志远(1981—),男,山东泰安人,2004年毕业于石油大学(华东)石油工程专业,2009年获中国石油大学(华东)油气井工程专业博士学位,教授,博士生导师,主要从事油气井多相流动理论及应用、海洋石油工程、天然气水合物开发及流动保障等研究。系本刊编委。E-mail:wangzy1209@ 126.com

  • 中图分类号: TE28+3

Numerical Study on Drilling Fluid Lost Circulation under Fluid-Solid Coupling in Deep Fractured Gas Reservoir

  • 摘要:

    钻进裂缝性地层的过程中井漏问题严峻,易导致产能降低和钻井安全事故。为此,综合考虑钻井液与天然气的物性差异、基质与裂缝间的耦合流动及裂缝开度的动态演化规律,建立了基于气液两相流动的裂缝性气藏漏失预测模型,并与试验数据进行对比,验证了模型的准确性;基于该模型,系统分析了裂缝性气藏地质构造、基质参数、裂缝参数和井底压差等因素对漏失的影响规律,修正了传统统计学漏失模型,提出了适用于裂缝性气藏的漏失速率计算方法。研究结果表明,裂缝性气藏的漏失速率随着裂缝增宽呈对数函数增长,增长趋势先急后缓,随着井底压差和裂缝长度增大呈线性增长;发育有断层裂缝性气藏的漏失速率随着裂缝宽度和井底压差增大呈指数增长,随着井眼与断层的距离增大呈对数式减小。研究结果为完善裂缝性气藏井漏规律和优选防漏堵漏技术提供了理论依据。

    Abstract:

    During the drilling process in fractured formations, the issue of lost circulation is severe, which can easily lead to reduced productivity and drilling safety accidents. To address this, the differences in physical properties between drilling fluid and natural gas, coupled flow between matrix and fractures, and the dynamic evolution of fracture opening were comprehensively considered, and the lost circulation prediction model for fractured gas reservoirs with a gas and liquid two-phase flow was established. The accuracy of the model was verified by comparing it with experimental data. Based on this model, the influence of geological structure, matrix parameters, fracture parameters, and bottom-hole pressure difference on lost circulation was analyzed. Furthermore, the traditional statistical lost circulation model was refined, and a method of lost circulation rate characterization suitable for fractured gas reservoirs was provided. The results indicate that the lost circulation rate increases logarithmically with the increase in fracture width, showing a growth trend of first accelerating and then slowing down. It increases linearly with the increase in bottom-hole pressure difference and fracture length. However, for fractured gas reservoirs with developed faults, the lost circulation rate increases exponentially with the increase in fracture width and bottom-hole pressure difference and decreases logarithmically with an increase in the distance between the wellbore and fault. The research results provide a theoretical basis for improving the lost circulation law of fractured gas reservoirs and optimizing the technology of lost circulation prevention and plugging.

  • 图  1   裂缝性介质几何模型

    Figure  1.   Geometric model of fractured media

    图  2   液相饱和度的分布

    Figure  2.   Distribution of liquid phase saturation

    图  3   验证案例的几何模型

    Figure  3.   Geometric model of verification cases

    图  4   不同漏失模型的数值模拟结果

    Figure  4.   Numerical simulation results of different lost circulation models

    图  5   数值案例的几何模型

    Figure  5.   Geometric model of numerical cases

    图  6   不同渗流模型的漏失速率

    Figure  6.   Lost circulation rates of different seepage models

    图  7   漏失过程基质渗透率和裂缝宽度的演化

    Figure  7.   Evolution of matrix permeability and fracture width during lost circulation process

    图  8   累计漏失量随裂缝宽度的变化曲线

    Figure  8.   Variation of cumulative lost circulation with fracture width

    图  9   不同裂缝性气藏累计漏失量的变化规律

    Figure  9.   Variation law of cumulative lost circulation of different fractured gas reservoir

    图  10   累计漏失量随基质渗透率的变化曲线

    Figure  10.   Variation of cumulative lost circulation with matrix permeability

    图  11   累计漏失量随钻井液黏度变化的曲线

    Figure  11.   Variation of cumulative lost circulation with viscosity of drilling fluid

    图  12   累计漏失量随井底压力变化的曲线

    Figure  12.   Variation of cumulative lost circulation with bottom-hole pressure

    图  13   不同裂缝性气藏漏失速率预测结果的误差分布

    Figure  13.   Error distribution of lost circulation prediction results for different types of fractured gas reservoirs

  • [1] 刘岩生,张佳伟,黄洪春. 中国深层—超深层钻完井关键技术及发展方向[J]. 石油学报,2024,45(1):312–324. doi: 10.7623/syxb202401018

    LIU Yansheng, ZHANG Jiawei, HUANG Hongchun. Key technologies and development direction for deep and ultra-deep drilling and completion in China[J]. Acta Petrolei Sinica, 2024, 45(1): 312–324. doi: 10.7623/syxb202401018

    [2] 杨鹏程,薛浩楠,李升,等. 超深层高压油气藏天然气偏差系数计算新模型[J]. 石油钻探技术,2023,51(6):106–114. doi: 10.11911/syztjs.2023112

    YANG Pengcheng, XUE Haonan, LI Sheng, et al. A new model for calculating deviation factor of natural gas in ultra-deep oil and gas reservoirs under high pressure[J]. Petroleum Drilling Techniques, 2023, 51(6): 106–114. doi: 10.11911/syztjs.2023112

    [3] 房超,张辉,陈朝伟,等. 地质工程一体化漏失机理与预防措施:以塔里木库车山前古近系复合盐层为例[J]. 石油钻采工艺,2022,44(6):684–692.

    FANG Chao, ZHANG Hui, CHEN Zhaowei, et al. Geology-engineering integrated investigation of leakoff mechanisms and prevention measures: a case study of the Palaeogene composite salt layer in the Kuqa piedmont zone, Tarim Basin[J]. Oil Drilling & Production Technology, 2022, 44(6): 684–692.

    [4] 曲鸿雁,胡佳伟,周福建,等. 深层裂缝性致密砂岩气藏基质–裂缝气体流动机理[J]. 石油钻探技术,2024,52(2):153–164. doi: 10.11911/syztjs.2024045

    QU Hongyan, HU Jiawei, ZHOU Fujian, et al. Mechanism of gas flow in matrix-fracture in deep fractured tight sandstone gas reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(2): 153–164. doi: 10.11911/syztjs.2024045

    [5]

    XIA Yang, JIN Yan, CHEN Mian, et al. Hydrodynamic modeling of mud loss controlled by the coupling of discrete fracture and matrix[J]. Journal of Petroleum Science and Engineering, 2015, 129: 254–267. doi: 10.1016/j.petrol.2014.07.026

    [6]

    LI Lei, YANG Jin, SONG Yu, et al. Numerical study of the mud loss in naturally fractured oil layers with two-phase flow model[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110040. doi: 10.1016/j.petrol.2021.110040

    [7] 张矿生,宫臣兴,陆红军,等. 基于集成学习的井漏智能预警模型及智能推理方法[J]. 石油钻采工艺,2023,45(1):47–54.

    ZHANG Kuangsheng, GONG Chenxing, LU Hongjun, et al. Intelligent early warning model and intelligent reasoning method based on integrated learning for loss circulation[J]. Oil Drilling & Production Technology, 2023, 45(1): 47–54.

    [8] 朱明明,孙欢,孙艳,等. 陇东致密油区域恶性出水漏层堵漏技术[J]. 石油钻探技术,2023,51(6):50–56. doi: 10.11911/syztjs.2023003

    ZHU Mingming, SUN Huan, SUN Yan, et al. Loss circulation control technology for malignant water leakage layer in Longdong tight oil region[J]. Petroleum Drilling Techniques, 2023, 51(6): 50–56. doi: 10.11911/syztjs.2023003

    [9] 康毅力,田国丰,游利军,等. 缝面摩滑:深部裂缝性地层钻井液漏失加剧的新机制[J]. 石油钻探技术,2022,50(1):45–53. doi: 10.11911/syztjs.2021033

    KANG Yili, TIAN Guofeng, YOU Lijun, et al. Friction & sliding on fracture surfaces: a new mechanism for increasing drilling fluid leakage in deep fractured reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 45–53. doi: 10.11911/syztjs.2021033

    [10]

    LIETARD O, UNWIN T, GUILLOT D, et al. Fracture width LWD and drilling Mud/LCM selection guidelines in naturally fractured reservoirs[R]. SPE 36832, 1996.

    [11]

    SANFILLIPPO F, BRIGNOLI M, SANTARELLI F J, et al. Characterization of conductive fractures while drilling[R]. SPE 38177, 1997.

    [12]

    LAVROV A, TRONVOLL J. Mechanics of borehole ballooning in naturally-fractured formations[R]. SPE 93747, 2005.

    [13] 李大奇,曾义金,刘四海,等. 基于分形理论的粗糙裂缝钻井液漏失模型研究[J]. 石油钻探技术,2017,45(4):46–52.

    LI Daqi, ZENG Yijin, LIU Sihai, et al. Drilling fluid loss model in rough fractures based on fractal theory[J]. Petroleum Drilling Techniques, 2017, 45(4): 46–52.

    [14]

    MAJIDI R, MISKA S Z, AHMED R, et al. Radial flow of yield-power-law fluids: Numerical analysis, experimental study and the application for drilling fluid losses in fractured formations[J]. Journal of Petroleum Science and Engineering, 2010, 70(3/4): 334–343.

    [15] 李大奇,刘四海,康毅力,等. 天然裂缝性地层钻井液漏失规律研究[J]. 西南石油大学学报(自然科学版),2016,38(3):101–106.

    LI Daqi, LIU Sihai, KANG Yili, et al. Dynamic behavior of drilling fluid leakage in naturally fractured formations[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(3): 101–106.

    [16] 贾利春,陈勉,侯冰,等. 裂缝性地层钻井液漏失模型及漏失规律[J]. 石油勘探与开发,2014,41(1):95–101. doi: 10.11698/PED.2014.01.12

    JIA Lichun, CHEN Mian, HOU Bing, et al. Drilling fluid loss model and loss dynamic behavior in fractured formations[J]. Petroleum Exploration and Development, 2014, 41(1): 95–101. doi: 10.11698/PED.2014.01.12

    [17]

    OZDEMIRTAS M, KURU E, BABADAGLI T. Experimental investigation of borehole ballooning due to flow of non-Newtonian fluids into fractured rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(7): 1200–1206. doi: 10.1016/j.ijrmms.2010.07.002

    [18] 王明波,郭亚亮,方明君,等. 裂缝性地层钻井液漏失动力学模拟及规律[J]. 石油学报,2017,38(5):597–606. doi: 10.7623/syxb201705013

    WANG Mingbo, GUO Yaliang, FANG Mingjun, et al. Dynamics simulation and laws of drilling fluid loss in fractured formations[J]. Acta Petrolei Sinica, 2017, 38(5): 597–606. doi: 10.7623/syxb201705013

    [19] 李大奇. 裂缝性地层钻井液漏失动力学研究[D]. 成都:西南石油大学,2012.

    LI Daqi. Numerical and experimental investigations of drilling fluid losses in fractured formations[D]. Chengdu: Southwest Petroleum University, 2012.

    [20] 牛骏,苏建政,严侠,等. 基于嵌入式离散裂缝和扩展有限元的裂缝性页岩油藏流固耦合高效数值模拟方法[J]. 科学技术与工程,2020,20(7):2643–2651. doi: 10.3969/j.issn.1671-1815.2020.07.017

    NIU Jun, SU Jianzheng, YAN Xia, et al. An efficient numerical simulation method with hydro-mechanical coupling model of fractured shale oil reservoir based on embedded discrete fracture model and extended finite element method[J]. Science Technology and Engineering, 2020, 20(7): 2643–2651. doi: 10.3969/j.issn.1671-1815.2020.07.017

    [21] 陈志明,张绍琦,周彪,等. 考虑离散裂缝的非均质裂缝性气藏数值试井新模型[J]. 天然气工业,2023,43(2):77–86. doi: 10.3787/j.issn.1000-0976.2023.02.008

    CHEN Zhiming, ZHANG Shaoqi, ZHOU Biao, et al. A new numerical well testing model considering discrete fractures for heterogeneous fractured gas reservoirs[J]. Natural Gas Industry, 2023, 43(2): 77–86. doi: 10.3787/j.issn.1000-0976.2023.02.008

    [22] 金泰宇. 三维粗糙裂缝网络钻井液漏失流固耦合模型研究[J]. 石油钻探技术,2024,52(1):69–77. doi: 10.11911/syztjs.2023100

    JIN Taiyu. Study on three-dimensional fluid-solid coupling model of drilling fluid leakage in rough fracture network[J]. Petroleum Drilling Techniques, 2024, 52(1): 69–77. doi: 10.11911/syztjs.2023100

    [23] 房娜,刘宗宾,岳宝林,等. 裂缝性油藏渗流特征及注水策略[J]. 特种油气藏,2024,31(3):91–97. doi: 10.3969/j.issn.1006-6535.2024.03.012

    FANG Na, LIU Zongbin, YUE Baolin, et al. Seepage characteristics and water injection strategy of fractured reservoir[J]. Special Oil & Gas Reservoirs, 2024, 31(3): 91–97. doi: 10.3969/j.issn.1006-6535.2024.03.012

    [24]

    PENG Yan, LIU Jishan, PAN Zhejun, et al. A sequential model of shale gas transport under the influence of fully coupled multiple processes[J]. Journal of Natural Gas Science and Engineering, 2015, 27(Part 2): 808-821.

    [25] 高永海. 深水油气钻探井筒多相流动与井控的研究[D]. 青岛:中国石油大学(华东),2007.

    GAO Yonghai. Study on multi-phase flow in wellbore and well control in deep water drilling[D]. Qingdao: China University of Petroleum(East China), 2007.

    [26] 李宁,刘洪涛,张权,等. 大温压域钻井液流变参数预测模型[J]. 钻井液与完井液,2023,40(2):143–155. doi: 10.12358/j.issn.1001-5620.2023.02.001

    LI Ning, LIU Hongtao, ZHANG Quan, et al. Model for predicting drilling fluid rheological parameters in wide temperature and pressure range[J]. Drilling Fluid & Completion Fluid, 2023, 40(2): 143–155. doi: 10.12358/j.issn.1001-5620.2023.02.001

    [27]

    WEI Shiming, JIN Yan, XIA Yang. Predict the mud loss in natural fractured vuggy reservoir using discrete fracture and discrete vug network model[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107626. doi: 10.1016/j.petrol.2020.107626

    [28]

    LIAO Youqiang, WANG Zhiyuan, CHAO Mingzhe, et al. Coupled wellbore–reservoir heat and mass transfer model for horizontal drilling through hydrate reservoir and application in wellbore stability analysis[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104216. doi: 10.1016/j.jngse.2021.104216

    [29] 黄朝琴,高博,王月英,等. 基于模拟有限差分法的离散裂缝模型两相流动模拟[J]. 中国石油大学学报(自然科学版),2014,38(6):97–105. doi: 10.3969/j.issn.1673-5005.2014.06.015

    HUANG Zhaoqin, GAO Bo, WANG Yueying, et al. Two-phase flow simulation of discrete fracture model using a novel mimetic finite difference method[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(6): 97–105. doi: 10.3969/j.issn.1673-5005.2014.06.015

    [30]

    YAN Xia, HUANG Zhaoqin, YAO Jun, et al. An efficient numerical hybrid model for multiphase flow in deformable fractured-shale reservoirs[J]. SPE Journal, 2018, 23(4): 1412–1437. doi: 10.2118/191122-PA

    [31]

    LIU Jia, XUE Yi, ZHANG Qi, et al. Coupled thermo-hydro-mechanical modelling for geothermal doublet system with 3D fractal fracture[J]. Applied Thermal Engineering, 2022, 200: 117716. doi: 10.1016/j.applthermaleng.2021.117716

    [32] 滕学清,孙宝江,张耀明,等. 无安全压力窗口裂缝性地层五步压回法压井方法[J]. 石油钻探技术,2018,46(6):20–25.

    TENG Xueqing, SUN Baojiang, ZHANG Yaoming, et al. A five-step bullheading killing well control method for fractured formations without a safety pressure window[J]. Petroleum Drilling Techniques, 2018, 46(6): 20–25.

    [33] 张磊,许杰,谢涛,等. 几种裂缝性漏失压力计算模型的比较分析[J]. 石油机械,2018,46(9):13–17.

    ZHANG Lei, XU Jie, XIE Tao, et al. Comparison of several calculation models for loss pressure of fractured formation[J]. China Petroleum Machinery, 2018, 46(9): 13–17.

    [34] 金衍,陈勉,刘晓明,等. 塔中奥陶系碳酸盐岩地层漏失压力统计分析[J]. 石油钻采工艺,2007,29(5):82–84. doi: 10.3969/j.issn.1000-7393.2007.05.023

    JIN Yan, CHEN Mian, LIU Xiaoming, et al. Statistic analysis of leakage pressure of Ordovician carbonate formation in middle Tarim Basin[J]. Oil Drilling & Production Technology, 2007, 29(5): 82–84. doi: 10.3969/j.issn.1000-7393.2007.05.023

  • 期刊类型引用(30)

    1. 刘金璐,李军,柳贡慧,李宁,张权,周宝,孙红宇. 控压固井分段降密度环节井筒温压场预测模型研究. 石油科学通报. 2025(01): 107-119 . 百度学术
    2. 廖新伟,胡挺,姚延许,李德华. 青海油田英中区块深井复杂地层控压固井技术应用探讨. 西部探矿工程. 2025(03): 49-52 . 百度学术
    3. 邳进达. 全过程精细控压钻完井技术实践研究. 石化技术. 2025(03): 147-149 . 百度学术
    4. 肖伟,罗宇维,赵军,黄志强,石礼岗,温达洋,杨焕强,梅云涛. 海上窄压力窗口控压固井浆柱结构设计方法. 钻探工程. 2024(01): 58-67 . 百度学术
    5. 刘金璐,李军,何举涛,杨宏伟,柳贡慧,李辉. 控压固井注入阶段流体密度和流变性分段预测方法. 石油钻探技术. 2024(01): 45-53 . 本站查看
    6. 刘金璐,李军,李辉,杨宏伟,柳贡慧. 控压固井注入阶段井筒压力预测模型. 钻井液与完井液. 2024(02): 231-238 . 百度学术
    7. 朱焕刚,燕修良,畅元江,许磊,王超. 随机波浪及平台运动下控压钻井隔水管端部轴向位置预测方法. 力学与实践. 2024(03): 472-481 . 百度学术
    8. 葛磊,杨春旭,郭兵,王志远,王子毓. 气侵后井底初始气泡平均直径预测模型实验研究. 石油钻探技术. 2023(02): 46-53 . 本站查看
    9. 刘永伟,胡磊,于德成,孙明亮,杨方方. 精细控压钻井技术在通探1井应用. 西部探矿工程. 2023(10): 65-67 . 百度学术
    10. 党冬红,徐文光,杨杰,和建勇,费中明,蒋世伟,卢三杰. 河探1井超高密度水泥浆控压注水泥塞技术. 石油钻采工艺. 2023(03): 284-288 . 百度学术
    11. 胡晋军,史为纪,吴文兵,李庆永. 辽河海域高压气井月探1井套损补救固井技术. 石油钻采工艺. 2023(04): 441-446 . 百度学术
    12. 纪经,冯颖韬,王有伟,张浩,崔策,黄峰,袁彬. 控压固井候凝阶段井口回压控制方法研究与应用. 石油化工应用. 2023(11): 32-35 . 百度学术
    13. 杨化东. 海洋油田综合调整钻井技术. 石油工业技术监督. 2022(01): 71-75 . 百度学术
    14. 王雪瑞,孙宝江,王志远,马金山,齐金涛,郗凤亮,赵殊勋,郝锋. 考虑温度压力耦合效应的控压固井全过程水力参数计算方法. 中国石油大学学报(自然科学版). 2022(02): 103-112 . 百度学术
    15. 王波,孙金声,白英睿,李伟,吕开河,王金堂,金家锋,张文哲. 耐高温杂化凝胶微粒随钻防漏体系. 中国石油大学学报(自然科学版). 2022(02): 94-102 . 百度学术
    16. 杜鹏德,姜庆波,朱洪,周兴春. 控压固井技术的现状与发展趋势分析. 石化技术. 2022(05): 187-189 . 百度学术
    17. 匡立新,陶谦. 渝东地区常压页岩气水平井充氮泡沫水泥浆固井技术. 石油钻探技术. 2022(03): 39-45 . 本站查看
    18. 杨赟,陈倩,韦海防,王培峰,唐弢,彭元超,马天寿,王玲. 窄安全密度窗口地层控压下尾管技术研究及应用. 钻采工艺. 2022(03): 1-8 . 百度学术
    19. 郑渊云,鲜明,周太彬,余才焌,李平川,赵常青,刘洋,廖富国. 动态控压固井工艺关键技术与应用. 天然气勘探与开发. 2022(03): 49-56 . 百度学术
    20. 徐璧华,李俊蝠,李斌,田东诚,饶福家. 窄安全压力窗口地层精细控压下套管技术研究. 西南石油大学学报(自然科学版). 2022(06): 54-61 . 百度学术
    21. 聂世均,邓理,鲜明,冯予淇,廖富国. 精细控压固井技术国内进展及下步发展方向. 西部探矿工程. 2021(01): 19-23 . 百度学术
    22. 王志明,王贺宁,耿国伟. 低密度水泥浆体系温度适用性研究. 化工管理. 2021(24): 51-52 . 百度学术
    23. 杨鸿波,陈国军,张国光,刘欣,刘刚. M油田盐膏层精细动态控压固井技术. 天然气勘探与开发. 2021(04): 72-79 . 百度学术
    24. 谭鹏,何思龙,李明印,陈雪峰,张景田,马喜伟. 库车坳陷超深层复杂气田钻完井技术. 石油钻采工艺. 2021(05): 580-585 . 百度学术
    25. 吴昭. 控压固井技术的应用现状及发展趋势探析. 中国石油和化工标准与质量. 2020(03): 241-242 . 百度学术
    26. 张辉. 大牛地气田丛式小井眼集约化钻井技术. 天然气技术与经济. 2020(02): 28-33 . 百度学术
    27. 易亚东,余中岳,高兴宝. 下套管失返性漏失正注反挤置换法工艺技术. 探矿工程(岩土钻掘工程). 2020(05): 27-31 . 百度学术
    28. 张辉. 顶部注水泥工艺在东胜气田多层开发中的首次应用. 天然气技术与经济. 2020(04): 41-45 . 百度学术
    29. 李宁,张亦驰,刘忠飞,张端瑞,李牧,何思龙. 控压固井井口回压设计分析与建议. 内蒙古石油化工. 2020(09): 61-64 . 百度学术
    30. 刘伟,李牧,何思龙,雷万能,房超,唐雷. 库车山前超高压盐水层控压固井实践与认识. 钻采工艺. 2020(05): 31-33+94+6-7 . 百度学术

    其他类型引用(6)

图(13)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  18
  • PDF下载量:  36
  • 被引次数: 36
出版历程
  • 收稿日期:  2023-12-28
  • 修回日期:  2025-03-05
  • 网络出版日期:  2025-03-16
  • 刊出日期:  2025-04-27

目录

    /

    返回文章
    返回