钻柱偏心旋转对环空摩阻压降影响的数值模拟研究

田野, 蒋东雷, 马传华, 徐一龙, 于晓东, 宋洵成

田野,蒋东雷,马传华,等. 钻柱偏心旋转对环空摩阻压降影响的数值模拟研究[J]. 石油钻探技术,2022, 50(5):42-49. DOI: 10.11911/syztjs.2022104
引用本文: 田野,蒋东雷,马传华,等. 钻柱偏心旋转对环空摩阻压降影响的数值模拟研究[J]. 石油钻探技术,2022, 50(5):42-49. DOI: 10.11911/syztjs.2022104
TIAN Ye, JIANG Donglei, MA Chuanhua, et al. Numerical simulation of the effects of eccentric rotation of the drill string on annular frictional pressure drop [J]. Petroleum Drilling Techniques,2022, 50(5):42-49. DOI: 10.11911/syztjs.2022104
Citation: TIAN Ye, JIANG Donglei, MA Chuanhua, et al. Numerical simulation of the effects of eccentric rotation of the drill string on annular frictional pressure drop [J]. Petroleum Drilling Techniques,2022, 50(5):42-49. DOI: 10.11911/syztjs.2022104

钻柱偏心旋转对环空摩阻压降影响的数值模拟研究

基金项目: 国家自然科学基金项目“钻井井下气液固多相流中超声波传播特性及气侵监测方法研究”(编号:52074326)和中海石油(中国)有限公司重大科技专项项目“南海西部油田上产2000万方关键技术研究”(编号:CNOOC-KJ 135 ZDXM 38 ZJ 01 ZJ)资助
详细信息
    作者简介:

    田野(1988—),男,山东青岛人,2010年毕业于中国石油大学(华东)船舶与海洋工程专业,2020年获中国石油大学(华东)石油与天然气工程专业硕士学位,工程师,主要从事海洋钻完井方面的技术管理工作。E-mail:tianye1@cnooc.com.cn

  • 中图分类号: TE21

Numerical Simulation of the Effects of Eccentric Rotation of the Drill String on Annular Frictional Pressure Drop

  • 摘要:

    准确预测钻柱偏心旋转工况下的环空摩阻压降是复杂结构井控压钻井的重要理论基础,但常规钻井液环空摩阻压降计算方法无法直接计算复杂结构井的环空摩阻压降。为此,应用数值模拟方法,分析了偏心度(0~67.42%)和钻柱转速(0~114.65 r/min)对典型环空(ϕ127.0 mm钻杆和ϕ215.9 mm井眼)中摩阻压降梯度的影响。分析结果表明:偏心度小于45.00%时,转速和偏心度对摩阻压降梯度影响较弱,摩阻压降梯度随转速增大略有降低,随偏心度增大而增大;偏心度大于45.00%时,低转速(<60 r/min)下摩阻压降梯度随偏心度增大而降低,高转速(≥60 r/min)下摩阻压降梯度随偏心度增大而略有增大。基于数值模拟结果,建立了偏心度分类的无因次偏心环空摩阻压降梯度预测模型,计算了南海某水平井ϕ215.9 mm井段的ECD,并与PWD测试结果进行了对比,平均相对误差为0.45%,表明该模型具有较好的准确性。研究结果表明,无因次偏心旋转环空摩阻压降计算模型可以精细描述环空压力场和准确计算ECD,为控压钻井水力参数优化提供指导。

    Abstract:

    Accurate prediction of the annular frictional pressure drop under eccentric rotation of drill string is an important theoretical basis for managed pressure drilling (MPD) in complex structure wells. However, the conventional calculation methods for the annular frictional pressure drop of drilling fluid cannot be directly applied to calculating the annular frictional pressure drop in complex structure wells. For this reason, the influences of eccentricity (0−67.42%) and the rotational speed (0−114.65 r/min)of the drill string on the frictional pressure drop gradient in a typical annulus (created by a ϕ127.0 mm drill pipe and a ϕ215.9 mm wellbore) were analyzed. The results show that when the eccentricity is lower than 45.00%, the rotational speed and eccentricity have a weak influence on the frictional pressure drop gradient. Specifically, the frictional pressure drop gradient decreases slightly with the increase of rotational speed but increases with the increase of eccentricity; when the eccentricity is higher than 45.00%, the frictional pressure drop gradient decreases with the increase of eccentricity at low rotational speed(<60 r/min), and the friction pressure drop gradient increases slightly with the increase of eccentricity at high rotational speed (>60 r/min). According to the numerical simulation results, a dimensionless frictional pressure drop gradient prediction model with eccentricity classification was built. The equivalent circulating density (ECD) of ϕ215.9 mm section of a horizontal well in the South China Sea was calculated by the proposed model. The results were then compared with the pressure-while-drilling (PWD) test results, with an average relative error of 0.45%, indicating that the proposed model has favorable accuracy. This study concludes that the proposed calculation model of the dimensionless annular frictional pressure drop under eccentric rotation can precisely describe the annular pressure field and ECD, and provide guidance for the hydraulic parameter optimization of MPD.

  • 图  1   22.47%偏心度下偏心环空物理模型与网格划分

    Figure  1.   Physical model and meshing of eccentric annulus with the eccentricity of 22.47%

    图  2   偏心环空轴向流速剖面

    Figure  2.   Axial velocity profile of eccentric annulus

    图  3   偏心环空切向流速剖面

    Figure  3.   Tangential velocity profile of eccentric annulus

    图  4   轴向流速沿高边方向线分布

    Figure  4.   Axial velocity distribution along the high-sidedirection line

    图  5   切向流速沿高边方向线分布

    Figure  5.   Tangential velocity distribution along the high-side direction line

    图  6   钻井液静压力沿宽流域中心线的分布

    Figure  6.   Static drilling fluid pressure distribution along the center line of wide flow domain

    图  7   偏心环空摩阻压降梯度与钻柱偏心度的关系曲线

    Figure  7.   Variation of frictional pressure drop gradient ineccentric annulus with eccentricity of drill string

    图  8   偏心环空摩阻压降梯度与钻柱转速的关系曲线

    Figure  8.   Variation frictional pressure drop gradient in eccentric annulus with rotational speed of drill string

    图  9   南海某水平井ϕ215.9 mm井段当量循环密度计算值与实测值对比

    Figure  9.   Comparison between calculated and measured values of ECD in ϕ215.9 mm section of a horizontal well in the South China Sea

    表  1   偏心环空摩阻压降梯度数值模拟计算结果

    Table  1   Numerical computation results of frictional pressure drop gradient in eccentric annulus

    偏心度,%不同钻柱转速下的摩阻压降梯度/(Pa·m−1
    0 r/min19.11 r/min38.22 r/min57.32 r/min76.43 r/min95.54 r/min114.65 r/min
    0898.91898.69898.73898.80898.91899.03899.18
    22.47921.99919.85916.67915.89915.74914.72912.90
    26.97930.93927.63922.68921.31921.12919.76917.43
    31.46939.65934.85927.73925.76925.82924.38921.85
    35.96946.11939.65930.41928.23929.19928.37926.25
    40.45947.04939.42929.21927.89931.11932.09931.20
    44.94938.21931.38923.14924.87932.38936.60937.83
    49.44916.31914.30912.82920.49934.65943.11946.98
    53.93882.02890.43901.17917.22939.97952.41958.70
    58.43841.34865.33892.13916.90948.91964.11971.14
    62.92800.91842.91886.76917.93957.17974.83977.08
    67.42763.60820.64879.73913.85956.12977.72968.23
    下载: 导出CSV

    表  2   无因次偏心环空摩阻压降梯度数值模拟结果

    Table  2   Numerical simulation results of dimensionless eccentric frictional pressure drop gradient

    偏心度,%不同钻柱转速下的无因次偏心环空摩阻压降梯度
    0 r/min19.11 r/min38.22 r/min57.32 r/min76.43 r/min95.54 r/min114.65 r/min
    01.00000.99980.99980.99991.00001.00011.0003
    22.471.02571.02331.01981.01891.01871.01761.0156
    26.971.03561.03201.02641.02491.02471.02321.0206
    31.461.04531.04001.03211.02991.02991.02831.0255
    35.961.05251.04531.03511.03261.03371.03281.0304
    40.451.05351.04511.03371.03221.03581.03691.0359
    44.941.04371.03611.02701.02891.03721.04191.0433
    49.441.01941.01711.01551.02401.03981.04921.0535
    53.930.98120.99061.00251.02041.04571.05951.0665
    58.430.93600.96260.99251.02001.05561.07251.0804
    62.920.89100.93770.98651.02121.06481.08451.0870
    67.420.84950.91290.97871.01661.06361.08771.0771
    下载: 导出CSV
  • [1] 朱丽华,向雪琳,邓玉涵,等. 控制压力钻井设备概述[J]. 钻采工艺,2010,33(3):43–47.

    ZHU Lihua, XIANG Xuelin, DENG Yuhan, et al. Summarization of managed pressure drilling equipment[J]. Drilling & Production Technology, 2010, 33(3): 43–47.

    [2] 刘伟,周英操,石希天,等. 塔里木油田库车山前超高压盐水层精细控压钻井技术[J]. 石油钻探技术,2020,48(2):23–28. doi: 10.11911/syztjs.2020034

    LIU Wei, ZHOU Yingcao, SHI Xitian, et al. Precise managed pressure drilling technology for ultra-high pressure brine layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23–28. doi: 10.11911/syztjs.2020034

    [3] 张洁,汤明,蒋振新,等. 椭圆井眼同心环空赫巴流体流动规律研究及压降计算简化模型[J]. 特种油气藏,2021,28(2):156–162. doi: 10.3969/j.issn.1006-6535.2021.02.024

    ZHANG Jie, TANG Ming, JIANG Zhengxin, et al. Study on flow rules of Herschel-Bulkley fluid in concentric annulus of elliptical wellbore and simplified model for pressure drop calculation[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 156–162. doi: 10.3969/j.issn.1006-6535.2021.02.024

    [4] 蔡萌. 幂律流体偏心环空螺旋流压力梯度的数值计算[J]. 石油钻采工艺,2010,32(2):11–14. doi: 10.3969/j.issn.1000-7393.2010.02.003

    CAI Meng. Numerical calculation of pressure gradient of helical flow of power-law fluid in eccentric annulus[J]. Oil Drilling & Production Technology, 2010, 32(2): 11–14. doi: 10.3969/j.issn.1000-7393.2010.02.003

    [5]

    BAIRSTOW L, BERRY A. Two-dimensional solutions of Poisson’s and Laplace’s equations[J]. Proceedings of the Royal Society A, 1919, 95(672): 457–475.

    [6]

    HEYDA J F. A green’s function solution for the case of laminar incompressible flow between non-concentric circular cylinders[J]. Journal of the Franklin Institute, 1959, 267(1): 25–34. doi: 10.1016/0016-0032(59)90034-1

    [7]

    REDBERGER P J, CHARLES M E. Axial laminar flow in a circular pipe containing a fixed eccentric core[J]. The Canadian Journal of Chemical Engineering, 1962, 40(4): 148–151. doi: 10.1002/cjce.5450400405

    [8]

    PIERCY N A V, HOOPER M S, WINNY H F. Viscous flow through pipes with cores[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1933, 15(99): 647–676. doi: 10.1080/14786443309462212

    [9]

    TAO L N, DONOVAN W F. Through-flow in concentric and eccentric annuli of fine clearance with and without relative motion of the boundaries[J]. Transactions of the ASME, 1955, 77(8): 1291–1299.

    [10]

    DRYDEN H L, MURNAGHAN F D, BATEMAN H. Hydrodynamics[M]. New York: Dover Publications, 1956.

    [11]

    VAUGHN R D. Axial laminar flow of non-Newtonian fluids in narrow eccentric annuli[J]. SPE Journal, 1965, 5(4): 277–280.

    [12] FERROUDJI H,HADJADJ A,NOFEI T,等. 偏心环空中幂率流体层流流动特性数值模拟研究[J]. 石油钻探技术,2020,48(4):37–42. doi: 10.11911/syztjs.2020066

    FERROUDJI H, HADJADJ A, NOFEI T, et al. Effects of the inner pipe rotation and rheological parameters on the axial and tangential velocity profiles and pressure drop of yield Power-Law fluid in eccentric annulus[J]. Petroleum Drilling Techniques, 2020, 48(4): 37–42. doi: 10.11911/syztjs.2020066

    [13]

    MITSUISHI N, AOYAGI Y. Non-Newtonian fluid flow in an eccentric annulus[J]. Journal of Chemical Engineering of Japan, 1973, 6(5): 402–408.

    [14]

    IYOHO A W, AZAR J J. An accurate slot-flow model for non-Newtonian fluid flow through eccentric annuli[J]. SPE Journal, 1981, 21(5): 565–572.

    [15]

    LUO Yuejin, PEDEN J M. Flow of non-Newtonian fluids through eccentric annuli[J]. SPE Production Engineering, 1990, 5(1): 91–96. doi: 10.2118/16692-PA

    [16] 刘希圣, 樊洪海, 丁岗. 幂律流体在定向井偏心环空内流动规律的研究[J]. 石油大学学报(自然科学版), 1988, 12(增刊1): 34−45.

    LIU Xisheng, FAN Honghai, DING Gang. A study on the flow properties of power law fluid in annuli of directional well[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 1988, 12(supplement 1): 34−45.

    [17] 刘希圣,崔海清. 幂律流体在倾斜旋转内管的偏心环空中层流流动近似解法[J]. 石油大学学报(自然科学版),1992,16(6):29–34.

    LIU Xisheng, CUI Haiqing. Approximate solution for laminar flow of power law fluid in inclined eccentric annulus with rotating inner pipe[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 1992, 16(6): 29–34.

    [18] 汪海阁,朱明亮. 屈服假塑性流体偏心环空流动的基本特征[J]. 钻采工艺,1997,20(6):5–12.

    WANG Haige, ZHU Mingliang. Basic characteristics of eccentric annular flow of yield pseudoplastic fluid[J]. Drilling & Production Technology, 1997, 20(6): 5–12.

    [19] 汪海阁,苏义脑. Robertson-Stiff流体在偏心环空中的流动[J]. 应用数学和力学,1998,19(10):931–940.

    WANG Haige, SU Yinao. Flow of Robertson-Stiff fluids through an eccentric annulus[J]. Applied Mathematics and Mechanics, 1998, 19(10): 931–940.

    [20] 吴疆. 偏心环空中非牛顿液轴向层流流动规律[J]. 石油钻采工艺,1985,7(2):1–14. doi: 10.13639/j.odpt.1985.02.001

    WU Jiang. Law of non-Newtonian fluid axial laminar flow in eccentric annulus[J]. Oil Drilling & Production Technology, 1985, 7(2): 1–14. doi: 10.13639/j.odpt.1985.02.001

    [21]

    HACIISLAMOGLU M. Practical pressure loss predictions in realistic annular geometries[R]. SPE 28304, 1994.

    [22]

    OOMS G, KAMPMAN-REINHARTZ B E. Influence of drillpipe rotation and eccentricity on pressure drop over borehole with Newtonian liquid during drilling[J]. SPE Drilling & Completion, 2000, 15(4): 249–253.

    [23]

    ESCUDIERA M P, GOULDSONA I W, OLIVEIRAB P J, et al. Effects of inner cylinder rotation on laminar flow of a Newtonian fluid through an eccentric annulus[J]. International Journal of Heat and Fluid Flow, 2000, 21(1): 92–103. doi: 10.1016/S0142-727X(99)00059-4

    [24]

    OZBAYOGLU E M, SORGUN M. Frictional pressure loss estimation of non-Newtonian fluids in realistic annulus with pipe rotation[J]. Journal of Canadian Petroleum Technology, 2010, 49(12): 57–64. doi: 10.2118/141518-PA

    [25]

    KHATIBI M, WIKTORSKI E, SUI Dan, et al. Experimental study of frictional pressure loss for eccentric drillpipe in horizontal wells[R]. SPE 191046, 2018.

    [26] 樊洪海. 实用钻井流体力学[M]. 北京: 石油工业出版社, 2014.

    FAN Honghai. Practical drilling fluid mechanics[M]. Beijing: Petroleum Industry Press, 2014.

    [27] 韩志勇. 关于钻柱一次弯曲临界条件的考证[J]. 石油钻探技术,2009,37(2):1–4. doi: 10.3969/j.issn.1001-0890.2009.02.001

    HAN Zhiyong. An investigation of critical condition of drill string first order buckling[J]. Petroleum Drilling Techniques, 2009, 37(2): 1–4. doi: 10.3969/j.issn.1001-0890.2009.02.001

    [28] 黄根炉,韩志勇. 设计井眼中钻柱轴向变形分析与计算[J]. 石油钻探技术,1999,27(6):4–6. doi: 10.3969/j.issn.1001-0890.1999.06.001

    HUANG Genlu, HAN Zhiyong. Analysis and calculations of axial deformation of drill string in borehole plan[J]. Petroleum Drilling Techniques, 1999, 27(6): 4–6. doi: 10.3969/j.issn.1001-0890.1999.06.001

    [29] 张更,李军,柳贡慧,等. 海上高温高压井环空ECD精细预测模型[J]. 钻井液与完井液,2021,38(6):698–704.

    ZHANG Geng, LI Jun, LIU Gonghui, et al. A precise model for prediction of annular ECD in offshore HTHP wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(6): 698–704.

  • 期刊类型引用(21)

    1. 何新星,严焱诚,朱礼平,王希勇,朱化蜀,王治国. 四川盆地威荣深层页岩气安全与提速钻井技术. 石油实验地质. 2024(03): 630-637 . 百度学术
    2. 王胜建,迟焕鹏,庞飞,王都乐,周志,李龙,姜鹍鹏. 黔北正安地区页岩气钻探工程难点与对策研究. 地质与勘探. 2023(01): 162-169 . 百度学术
    3. 王建龙,马凯,贾巍然,韩自立,柳鹤,李萍. 深层页岩气水平井优快钻井配套技术. 西部探矿工程. 2023(10): 76-79 . 百度学术
    4. 李俊,卢和平,胡象辉,王莉,周庆,彭梦. 川东红星地区二叠系吴家坪组海相页岩气钻井实践. 石油实验地质. 2023(06): 1189-1195 . 百度学术
    5. 袁光杰,付利,王元,郭凯杰,陈刚. 我国非常规油气经济有效开发钻井完井技术现状与发展建议. 石油钻探技术. 2022(01): 1-12 . 本站查看
    6. 张东清. 涡轮式水力振荡器在涪陵页岩气水平井中的应用. 科技和产业. 2022(05): 283-287 . 百度学术
    7. 陈宗琦,刘湘华,白彬珍,易浩. 顺北油气田特深井钻井完井技术进展与发展思考. 石油钻探技术. 2022(04): 1-10 . 本站查看
    8. 赵福豪,黄维安,雍锐,范宇,黄浩勇,江琳,李国真. 地质工程一体化研究与应用现状. 石油钻采工艺. 2021(02): 131-138 . 百度学术
    9. 范红康,刘劲歌,臧艳彬,周贤海,艾军,宋争. 涪陵页岩气田焦石坝区块调整井钻井技术. 石油钻探技术. 2021(03): 48-54 . 本站查看
    10. 孙焕泉,周德华,蔡勋育,王烽,冯动军,卢婷. 中国石化页岩气发展现状与趋势. 中国石油勘探. 2020(02): 14-26 . 百度学术
    11. 夏海帮. 页岩气井双暂堵压裂技术研究与现场试验. 石油钻探技术. 2020(03): 90-96 . 本站查看
    12. 谢林冲,王涛,何小琴,罗凯耀. 宜宾珙县龙马溪组页岩岩石力学性质研究. 矿物岩石. 2020(02): 114-120 . 百度学术
    13. 王建龙,冯冠雄,吴嘉澍,叶顺友,张洪虎,郭瑞. 长宁页岩气钻井提速提效难点与对策分析. 西部探矿工程. 2020(10): 70-72 . 百度学术
    14. 王建龙,冯冠雄,刘学松,郭瑞,高学生,霍阳. 长宁页岩气超长水平段水平井钻井完井关键技术. 石油钻探技术. 2020(05): 9-14 . 本站查看
    15. 窦玉玲,唐志军,徐云龙,席镜阳. 涪陵江东区块三维水平井优快钻井技术——以焦页91平台为例. 探矿工程(岩土钻掘工程). 2019(02): 55-59 . 百度学术
    16. 付茜,刘启东,刘世丽,张健伟,段宏亮,徐焕友. 中国“夹层型”页岩油勘探开发现状及前景. 石油钻采工艺. 2019(01): 63-70 . 百度学术
    17. 谭雷川,高德利,ADEEB Samer,陶红,陶冶,王正旭,任韶然,庞琬滢,张馨方. 基于钻柱正弦屈曲的套管磨损预测模型. 中国石油大学学报(自然科学版). 2019(04): 69-74 . 百度学术
    18. 赵全民,张金成,刘劲歌. 中国页岩气革命现状与发展建议. 探矿工程(岩土钻掘工程). 2019(08): 1-9 . 百度学术
    19. 索忠伟. ?228.6mm射流冲击器研制及硬地层提速试验. 石油钻探技术. 2019(04): 54-58 . 本站查看
    20. 王建龙,齐昌利,柳鹤,陈鹏,汪鸿,郑永锋. 沧东凹陷致密油气藏水平井钻井关键技术. 石油钻探技术. 2019(05): 11-16 . 本站查看
    21. 陈星星. 混合钻头在涪陵页岩气田的应用. 探矿工程(岩土钻掘工程). 2019(10): 34-39 . 百度学术

    其他类型引用(4)

图(9)  /  表(2)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  169
  • PDF下载量:  63
  • 被引次数: 25
出版历程
  • 收稿日期:  2022-04-21
  • 修回日期:  2022-07-30
  • 录用日期:  2022-08-21
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2022-09-29

目录

    /

    返回文章
    返回