Drilling Technology for Adjustment Wells of the Jiaoshiba Block in the Fuling Shale Gas Field
-
摘要: 随着涪陵页岩气田焦石坝区块进入开发调整期,单井可采储量降低,要继续经济开发就需要缩短钻井周期、降低钻井成本。为了实现钻井提速降本,进行了钻井优化设计、超长水平段钻井、强化参数钻井提速、基于等寿命理念的“一趟钻”钻井、“钻刮通洗一体化”完井和长效密封固井等方面的技术攻关,形成了涪陵页岩气田焦石坝区块调整井钻井技术。现场应用结果显示,调整井平均水平段长度达到2 096 m,同比涪陵页岩气田焦石坝区块一期增加37.8%;平均机械钻速达到9.49 m/h,同比一期提高26.2%;钻井周期62.27 d,同比一期缩短26.0%;环空带压比例由一期的70.0%降至4.6%。研究表明,涪陵页岩气田焦石坝区块调整井钻井关键技术满足了焦石坝区块部署调整井的技术需求,支撑了涪陵页岩气田稳产增效。Abstract: With the Jiaoshiba Block in the Fuling Shale Gas Field entering into the development and adjustment period, the recoverable reserves of single well are reduced. To develop the field economically, it is necessary to shorten the drilling cycle and reduce the drilling cost. Therefore, with the optimum design of drilling, drilling of ultra-long horizontal sections, increasing rate of penetration by optimization in drilling parameters, a “one-trip drilling” technique based on equal-life idea, integration of drilling, reaming and flushing in well completion, and long-term sealing technology in cementing, the drilling technology for adjustment wells of Jiaoshiba Block of the Fuling Shale Gas Field was formed. Field application results showed that the average length of horizontal sections in adjustment wells was 2 096 m, 37.8% longer than that in drilling the first phase drilling there. The average penetration rate reached 9.49 m/h, 26.2% higher than that in the first phase drilling and the drilling cycle was 62.27 d, which was 26.0% shorter than in the past. The percentage of wells with annular pressure lowered from 70.0% to 4.6%. The results show that the proposed key drilling technology could meet the technical needs of adjustment wells of Jiaoshiba Block of the Fuling Shale Gas Field, and provide supports for a stable production and more effective development of the Fuling Shale Gas Field.
-
Keywords:
- adjustment well /
- drilling /
- long horizontal section /
- one trip drilling /
- Jiaoshiba Block /
- Fuling Shale Gas Field
-
-
表 1 焦石坝区块部分调整井出现的井下复杂情况
Table 1 Complex downhole situation occurred in some adjustment wells of the Jiaoshiba Block
井号 完钻井深/m 机械钻速/(m·h–1) 钻井周期/d 复杂情况 复杂时效,% 焦页39-2-1HF 4 845 8.74 65.50 井漏1次,溢流1次 2.60 焦页11-2-1HF 4 155 6.86 68.13 井漏1次,溢流9次 3.18 焦页7-1HF 4 130 7.35 58.83 溢流1次 4.11 焦页39-1HF 4 350 7.26 64.46 溢流23次 21.04 焦页46-2HF 4 550 9.79 49.61 气侵1次,断钻具1次,溢流1次 13.00 焦页22-3HF 4 680 8.74 112.35 井漏7次,溢流1次,卡钻1次 52.82 焦页57-3HF 4 600 9.33 92.60 井漏4次,溢流1次,卡钻1次 28.95 表 2 涪陵页岩气田焦石坝区块强化参数钻井方案
Table 2 Drilling scheme with enhanced drilling parameters of the Jiaoshiba Block in the Fuling Shale Gas Field
开次 钻压/kN 排量/(L·s–1) 转速/(r·min–1) 一开 >100 >60 >70 二开 >80 >60 >70 三开 >120 >30 >70 表 3 涪陵页岩气田焦石坝区块调整井“一趟钻”应用情况
Table 3 Application of one-trip drilling technique to adjustment wells of the Jiaoshiba Block in the Fuling Shale Gas Field
井号 应用井段/m 水平段长/
m纯钻时/
h机械钻速/
(m·h–1)焦页21-S2HF 2 858~4 645 1 787 97.50 19.33 焦页5-S1HF 2 661~4 313 1 652 132.50 12.47 焦页5-3HF 2 769~4 334 1 565 141.00 11.10 焦页22-S1HF 2 820~5 364 1 657 149.00 17.07 焦页45-6HF 3 027~4 916 1 889 222.96 8.47 焦页83-1HF 3 956~5 808 1 852 164.00 11.29 焦页83-3HF 4 081~5 456 1 375 128.00 10.74 焦页31-S1HF 2 671~4 672 2 001 136.00 14.71 焦页92-1HF 3 701~5 118 1 417 121.00 11.71 焦页192-4HF 4 230~5 726 1 496 147.75 10.12 焦页186-1HF 3 635~5 121 1 486 111.50 16.33 焦页23-S2HF 2 679~4 780 2 101 106.00 19.82 表 4 高效涡轮式水力振荡器现场应用效果
Table 4 Field application effect of efficient turbine hydraulic oscillator
井号 井段/m 层位 进尺/
m机械钻速/
(m·h–1)机械钻速提高,% 焦页23-S1HF 3 400~4 772 龙马溪组 1 372 9.09 27.6 焦页23-4HF 2 712~4 608 龙马溪组 1 896 11.02 31.7 焦页23-S2HF 2 679~4 780 龙马溪组 2 101 19.82 37.2 焦页106-2HF 3 671~5 235 龙马溪组 1 564 3.87 33.4 焦页23-S3HF 2 650~4 447 龙马溪组 1 797 7.50 66.0 焦页23-5HF 2 721~4 612 龙马溪组 1 891 6.83 135.5 -
[1] 艾军,张金成,臧艳彬,等. 涪陵页岩气田钻井关键技术[J]. 石油钻探技术,2014,42(5):9–15. AI Jun, ZHANG Jincheng, ZANG Yanbin, et al. The key drilling technologies in Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2014, 42(5): 9–15.
[2] 牛新明. 涪陵页岩气田钻井技术难点及对策[J]. 石油钻探技术,2014,42(4):1–6. NIU Xinming. Drilling technology challenges and resolutions in Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2014, 42(4): 1–6.
[3] 李亚南,于占淼. 涪陵页岩气田二期水平井钻井防碰绕障技术[J]. 石油钻采工艺,2017,39(3):303–306. LI Yanan, YU Zhanmiao. Collision avoidance and obstacle bypass technology for horizontal wells in the second phase of Fuling Shale Gas Field[J]. Oil Drilling & Production Technology, 2017, 39(3): 303–306.
[4] 潘军,刘卫东,张金成. 涪陵页岩气田钻井工程技术进展与发展建议[J]. 石油钻探技术,2019,46(4):9–15. PAN Jun, LIU Weidong, ZHANG Jincheng. Drilling technology progress and recommendations for the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2019, 46(4): 9–15.
[5] 王显光,李雄,林永学. 页岩水平井用高性能油基钻井液研究与应用[J]. 石油钻探技术,2013,41(2):17–22. doi: 10.3969/j.issn.1001-0890.2013.02.004 WANG Xianguang, LI Xiong, LIN Yongxue. Research and application of high performance oil base drilling fluid for shale horizontal wells[J]. Petroleum Drilling Techniques, 2013, 41(2): 17–22. doi: 10.3969/j.issn.1001-0890.2013.02.004
[6] 王中华. 页岩气水平井钻井液技术的难点及选用原则[J]. 中外能源,2012,17(4):43–47. WANG Zhonghua. Difficulty and applicable principle of the drilling fluid technology of horizontal wells for shale gas[J]. Sino-Global Energy, 2012, 17(4): 43–47.
[7] 张金成,孙连忠,王甲昌,等. “井工厂”技术在我国非常规油气开发中的应用[J]. 石油钻探技术,2014,42(1):20–25. doi: 10.3969/j.issn.1001-0890.2014.01.004 ZHANG Jincheng, SUN Lianzhong, WANG Jiachang, et al. Application of multi-well pad in unconventional oil and gas development in China[J]. Petroleum Drilling Techniques, 2014, 42(1): 20–25. doi: 10.3969/j.issn.1001-0890.2014.01.004
[8] 赵全民,张金成,刘劲歌. 中国页岩气革命现状与发展建议[J]. 探矿工程(岩土钻掘工程),2019,46(8):1–9. ZHAO Quanmin, ZHANG Jincheng, LIU Jinge. Status of Chinese shale gas revolution and development proposal[J]. Exploration Engineering (Rock & Soil Drilling Tunneling), 2019, 46(8): 1–9.
[9] 赵勇,杨海波. 页岩气开发现状及成功开发页岩气的关键因素[J]. 中外能源,2011,16(7):47–50. ZHAO Yong, YANG Haibo. Development status and key factors of successful development of shale gas[J]. Sino-Global Energy, 2011, 16(7): 47–50.
[10] 周贤海. 涪陵焦石坝区块页岩气水平井钻井完井技术[J]. 石油钻探技术,2013,41(5):26–30. doi: 10.3969/j.issn.1001-0890.2013.05.005 ZHOU Xianhai. Drilling & completion techniques used in shale gas horizontal wells in Jiaoshiba Block of Fuling Area[J]. Petroleum Drilling Techniques, 2013, 41(5): 26–30. doi: 10.3969/j.issn.1001-0890.2013.05.005
[11] 周贤海,臧艳彬. 涪陵地区页岩气山地“井工厂”钻井技术[J]. 石油钻探技术,2015,43(3):45–49. ZHOU Xianhai, ZANG Yanbin. Application of “well factory” drilling technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2015, 43(3): 45–49.
[12] 胥豪,牛洪波,牛似成,等. 六段制三维水平井轨道优化设计与应用[J]. 石油钻采工艺,2017,39(5):564–569. XU Hao, NIU Hongbo, NIU Sicheng, et al. Optimization design and application of six-stage 3D horizontal well trajectory[J]. Oil Drilling & Production Technology, 2017, 39(5): 564–569.
[13] 程玉生. 大斜度井井眼清洁状况分析及应用研究[D]. 青岛: 中国石油大学(华东), 2011. CHENG Yusheng. Hole cleaning in highly deviated wells and application analysis[D]. Qingdao: China University of Petroleum (East China), 2011.
[14] 纪国栋,王克林,孙晓峰,等. 井眼清洁工具沿全井段分布位置的计算方法[J]. 断块油气田,2016,23(3):397–400. JI Guodong, WANG Kelin, SUN Xiaofeng, et al. Calculation of distributed position of hole cleaning tools along whole wellbore[J]. Fault-Block Oil & Gas Field, 2016, 23(3): 397–400.
[15] 李明,巨亚锋,王在强,等. 大位移水平井井眼净化旋转因素数值模拟[J]. 西部探矿工程,2010,22(5):51–54. doi: 10.3969/j.issn.1004-5716.2010.05.021 LI Ming, JU Yafeng, WANG Zaiqiang, et al. The hole cleaning numerical simulation of drilling pipe rotation[J]. West-China Exploration Engineering, 2010, 22(5): 51–54. doi: 10.3969/j.issn.1004-5716.2010.05.021
[16] 李明,汪志明,郝炳英,等. 钻柱旋转对大位移井井眼净化影响规律的研究[J]. 石油机械,2009,37(12):34–37. LI Ming, WANG Zhiming, HAO Bingying, et al. Influence of drill string rotation on well cleaning in large displacement well[J]. China Petroleum Machinery, 2009, 37(12): 34–37.
[17] 陆桃妹. 钻柱旋转条件下大位移井井眼清洁评价研究[D]. 青岛: 中国石油大学(华东), 2016. LU Taomei. Hole cleaning evaluation of extended-reach wells under the condition of drill string rotation[D]. Qingdao: China University of Petroleum (East China), 2016.
[18] 徐小龙. 大位移井井眼清洁评价及水力参数优选研究[D]. 青岛: 中国石油大学(华东), 2013. XU Xiaolong. Hole cleaning evaluation and hydraulics optimization on extende-reach wells[D]. Qingdao: China University of Petroleum (East China), 2013.
[19] 丁士东,陶谦,马兰荣. 中国石化固井技术进展及发展方向[J]. 石油钻探技术,2019,47(3):41–49. doi: 10.11911/syztjs.2019073 DING Shidong, TAO Qian, MA Lanrong. Progress, outlook, and the development directions at Sinopec in cementing technology progress[J]. Petroleum Drilling Techniques, 2019, 47(3): 41–49. doi: 10.11911/syztjs.2019073