Drilling Fluid Technology for Horizontal Shale Oil Wells in the Dagang Oilfield
-
摘要: 针对大港油田沧东凹陷和歧口凹陷页岩油水平井水平段钻进过程中存在的井壁易失稳、井眼清洁效果差、摩阻和扭矩高等技术难点,在分析页岩油地层地质特征的基础上,制定了增强钻井液抑制性、封堵性和携岩性的技术对策,通过优选封堵剂、润滑剂等关键处理剂,形成了BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液。性能评价结果表明,BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液具有良好的抑制性能、携岩性能和封堵性能,能降低页岩渗透率,阻止压力传递,保证井壁稳定。大港油田36口页岩油水平井使用BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液钻进水平段,平均井径扩大率6.8%,未发生与钻井液有关的井下故障。这表明,BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液能解决大港油田页岩油水平井水平段钻进过程中的技术难点,可为大港油田页岩油水平井钻井提供技术支撑。Abstract: During the drilling of horizontal sections of horizontal shale oil wells in the Cangdong and Qikou sags of the Dagang Oilfield, technical difficulties such as wellbore instability, poor borehole cleaning, and high friction and torque were encountered. Based on analysis of geological characteristics of shale formation, technical countermeasures were made to enhance the inhibition, plugging, and rock-carrying properties of drilling fluids. Key treating agents including plugging agents and lubricants were optimized to form the BH-KSM-Shale and BH-WEI-Shale high-performance water base drilling fluids which possess good inhibition and plugging abilities. The performance evaluation results show that the drilling fluids have good inhibition performance, rock carrying performance and plugging performance. The developed drilling fluids can decrease the shale permeability, resist the pressure transfer, and ensure the wellbore stability. The BH-KSM-Shale and BH-WEI-Shale drilling fluids were applied to the drilling of the horizontal sections of 36 horizontal shale oil wells in the Dagang Oilfield. As a result, the average hole diameter enlargement rate of the horizontal sections was 6.8% and no downhole failure related to drilling fluids occurred. These results indicate that BH-KSM-Shale and BH-WEI-Shale drilling fluids can solve the difficulties in the drilling of horizontal sections of horizontal shale oil wells in the Dagang Oilfield, and provide technical support for the drilling of horizontal shale oil wells in the Dagang Oilfield.
-
Keywords:
- shale oil /
- horizontal well /
- water base drilling fluid /
- drilling fluid property /
- Dagang Oilfield /
- Well GY1-1-9H
-
油田长期注水开发导致地层的非均质性加剧,注入水沿高渗透层突入油井,导致油井含水率升高、产油量降低,增产稳产面临的难度很大。注水井深部调剖是油田稳产增产的重要技术措施之一,但对调剖剂的要求较高。冻胶型堵剂具有成胶时间可调、成胶强度高和价格便宜的特点,在油田调剖作业中得到了广泛的应用,但冻胶在注入地层的过程中受机械剪切、色谱分离和地层水稀释等多种因素的影响,其成冻时间、形成冻胶的强度和进入地层的深度难以控制,导致冻胶在地下的成胶效果变差,影响了调剖效果和有效期[1-7]。为解决以上问题,将水膨体发展为地面成胶体系,解决了地下成胶效果不可控的问题,但其初始粒径较大、且制备工艺复杂,影响了其在海上油田调剖调驱中的应用[8-12]。近年来发展起来聚合物微球调驱技术很好地解决了上述问题,但其采用乳液聚合方式进行制备,要求引发时间、聚合时间及聚合温度精准,对制备设备要求高,制备工艺相对复杂,不能在线生成注入,且合成原料中包含表面活性剂,增大了制备成本[13-16]。
针对目前冻胶、水膨体和聚合物微球调剖存在的问题,笔者采用机械剪切法制备了一种新的海上油田剖面调整用分散共聚物颗粒体系,不仅具有冻胶的特点,还不受地面剪切、稀释和色谱分离等因素的影响,能够变形进入地层深部,封堵地层深部的大孔道,调整渗流剖面,实现深部液流转向。同时,对制备工艺进行了探索和优化,为分散共聚物颗粒体系的现场应用奠定了基础。
1. 分散共聚物颗粒体系的制备
根据共聚物黏度的变化情况,制备过程分为共聚物制备和分散共聚物颗粒制备2个阶段。
1.1 共聚物的制备
化学材料:丙烯酰胺(AM),工业品;丙烯酸,工业品;N, N亚甲基双丙烯酰胺(MBA),分析纯;AMPS,分析纯;其余试剂均为分析纯。
以丙烯酰胺为主要原料,按比例加入其他添加剂,在水中溶解后置于65 ℃恒温水浴中,聚合物进行交联反应,形成黏度极高的高分子聚合物。其交联反应式为:
共聚物形成阶段分为引发阶段、快速交联阶段和稳定阶段。共聚物成胶后,形成三维凝胶网络结构,黏度不再增加。单体AM质量分数选用3%~6%,AM与MBA的质量比为250∶1~100∶1。不同AM/MBA质量比的共聚物样品合成时间及合成后的黏度如表1所示。
表 1 共聚物的制备参数Table 1. Preparation parameters of the copolymerAM质量分数,
%AM/MBA
质量比合成时间/
h共聚物黏度/
(mPa·s)5 167∶1 2.0 16 460 5 250∶1 2.5 15 320 1.2 分散共聚物颗粒的制备
分散共聚物颗粒形成阶段分为破碎阶段、研磨阶段和稳定阶段,研磨转速为1 000 r/min,研磨时间为3~15 min,制得不同粒径分布的均一分散共聚物颗粒水相溶液。为了更好地了解影响分散共聚物颗粒制备的因素,测试了制备过程中体系黏度、粒径分布的变化情况。
1.2.1 制备过程中黏度的变化
分散共聚物颗粒制备过程中,体系黏度的变化是表征其性能的主要指标。研磨时间为1,5,10和15 min时的黏度分别为9.8,3.9,3.8和3.7 mPa·s。由此可以看出,将共聚物溶液(AM质量分数为5%,AM/MBA质量比为250∶1)加入胶体磨中高速研磨,其黏度在5 min后就迅速降至5.0 mPa·s以下,得到分散共聚物颗粒。
1.2.2 粒径分布
使用马尔文3000激光粒度仪测试分散共聚物颗粒溶液的粒径分布情况,测量前使用蒸馏水将分散共聚物颗粒溶液稀释至400 mg/L,每个待测样品测3个平行样,得到研磨时间对体系粒径分布的影响结果,如图1和表2所示。
表 2 分散共聚物颗粒粒径随研磨时间的变化Table 2. Viscosity change of dispersed copolymer particles in grinding process剪切时间/min 平均粒径/μm 最大粒径/μm 最小粒径/μm 1 1 520.0 3 080.0 31.1 5 135.0 352.0 4.6 从图1可以看出,研磨1 min时,体系的粒径分布范围较广,平均粒径为1 520 μm;持续研磨5 min后,体系的粒径分布变窄,平均粒径降至135 μm,说明分散共聚物颗粒制备过程中,随着研磨时间增长,体系粒径分布更为均一。另外,从表2可以看出,最大粒径与最小粒径的比值随着研磨时间增长而降低,进一步验证了以上结果。
2. 分散共聚物颗粒溶液性能评价
2.1 流变性测试
采用双狭缝模型,剪切速率变化范围为1~1 000 s–1,测试质量分数为3%的分散共聚物颗粒溶液的黏度随剪切速率的变化情况。试验采用模拟垦利油田注入水,总矿化度4 485.0 mg/L,钙镁离子含量为71.0 mg/L,pH值为7.34。使用Anton Paar旋转流变仪,测定了65 ℃下分散共聚物颗粒溶液的流变性能,结果见图2。由图2可知,在低剪切速率下,分散共聚物颗粒溶液的黏度随剪切速率升高而降低;在中剪切速率下,其溶液黏度基本不受剪切速率的影响,呈现出牛顿流体的性质;在高剪切流动状态下,其溶液黏度随剪切速率升高而略有升高。分析认为,在高剪切速率下,分散共聚物不断重新排布、相互碰撞而形成网状结构,导致黏度略有升高。剪切速率为1~1 000 s–1时,3%分散共聚物颗粒溶液的黏度低于6.0 mPa·s;剪切速率为7.34 s–1时,其溶液黏度为1.1 mPa·s,略高于水。
2.2 分散稳定性测试
使用Turbiscan多重光稳定性分析仪,将质量分数为3%的分散共聚物颗粒溶液放入分析仪中,每间隔15 min,对测试样品从底部到顶部扫描一次,测试其背散射光强和透射光强,并据此直接计算得到测试样品的稳定性动力学指数。稳定性动力学指数累计了测试样品所有光强的变化,反映了测试样品的稳定程度。稳定性动力学指数越大,测试样品越不稳定;稳定性动力学指数小于3.0时,测试样品的稳定性较好。采用高级分析模块,计算分散共聚物颗粒溶液的稳定性动力学指数,得到其稳定性动力学指数随时间的变化,如图3所示。
从图3可以看出,分散共聚物颗粒溶液的稳定性动力学指数小于3.0,性能较为稳定,分散共聚物颗粒溶液从井口注入后运移至井筒及近井地带期间能够保持良好的分散稳定性能,不会发生沉降聚集。
3. 封堵性和运移性评价
3.1 封堵性评价试验
采用填砂管驱替装置,填砂管长度50.0 cm,渗透率5 000 mD左右,测试相同用量条件下分散共聚物颗粒体系和聚合物凝胶体系在多孔介质内的封堵情况。在模拟地层温度下,以2.0 mL/min的注入速度,分别注入1.0倍孔隙体积的分散共聚物颗粒体系和聚合物凝胶体系,记录注入压力的变化情况。后续水驱至压力平稳,记录后续水驱阶段压力的响应情况,结果如图4所示。
从图4可以看出,在用量相同条件下,注入1.0倍孔隙体积的1 500 mg/L聚合物凝胶体系时,注入压力升至0.1 MPa;注入1.0倍孔隙体积的分散共聚物颗粒体系时,注入压力升至0.5 MPa。后续水驱阶段,2种体系均显示出较高的残余阻力系数,其中,聚合物凝胶体系的注入压力升至0.9 MPa,分散共聚物颗粒体系的注入压力升至2.8 MPa。
因此,渗透率大于5 000 mD的高渗透储层进行剖面调整时,在调剖剂用量相同的条件下,分散共聚物颗粒体系具有更低的注入压力,即具有更优的注入性能和更强的封堵能力。
3.2 模拟地层条件的长填砂管运移性试验
填砂模型封堵性试验结果表明,分散共聚合颗粒体系具有良好的封堵性能,为了更真实地反映其在地层条件下的封堵性,开展了长填砂管条件下的封堵运移性试验。采用10.00 m填砂模型进行长距离运移性试验,模型渗透率为6 009 mD,沿填砂管均布5个测压点,评价其深部运移及封堵性能。
试验时首先以1.5 mL/min的注入速度向填砂模型内注入地层水,至模型内部压力平稳;然后再以1.5 mL/min的注入速度向填砂模型内注入1.0倍孔隙体积的分散共聚物颗粒体系;关闭注入端和采出端,在65 ℃恒温箱中放置10 d,再以1.5 mL/min的注入速度向填砂模型内注入后续水,记录驱替过程中压力的变化情况,结果见图5。
从图5可以看出,开始注水后,各测压点的压力迅速上升;上升至一定压力后,压力逐渐降低;后续水突破后,距离注入端越远,压力下降越缓慢。这说明分散共聚合颗粒被注入水突破后,封堵体系在填砂模型内仍保持良好的封堵性能。因此,在模拟地层条件下,分散共聚物颗粒体系对于渗透率大于5 000 mD的高渗透储层具有良好的运移性和封堵性。
4. 结论与建议
1)通过采用特殊的交联技术和分散技术,形成的高黏聚合物经研磨后,制得纳米–微米级的均一分散水溶液。
2)通过调节主剂AM的质量分数和AM/MBA的质量比,可得到不同粒径分布的分散共聚物颗粒溶液;其初始黏度可控制在10 mPa·s以内,具有良好的注入性、深部运移性和对高渗透储层的有效封堵性能;制备的分散共聚物颗粒溶液经高速剪切后,黏度和粒度变化较小,表现出良好的抗剪切性能。
3)分散共聚物颗粒体系的黏度可控,工艺上可实现在线注入,可进入地层深部,对高渗透地层具有较好的封堵效果,可实现深部调剖。
-
表 1 页岩阳离子交换容量分析结果
Table 1 Results of cation exchange capacity (CEC) in shale
岩样
编号亚甲基蓝溶液
消耗量/mL阳离子交换容量/
(mmol·kg–1)膨润土当量/
(g·kg–1)1 2.5 25 35.71 2 1.5 15 21.43 3 1.0 10 14.29 4 1.5 15 21.43 5 2.0 20 28.57 表 2 页岩油水平井水基钻井液封堵性能评价结果
Table 2 Plugging results of the water-based drilling fluids used in horizontal shale oil wells
配方 砂盘渗
透率/
mD滤失量/mL 封堵滤
失量/
mL静态滤
失速率/
(mL·min−1/2)1 min 5 min 7.5 min 15 min 25 min 30 min 3 400 0.8 4.2 6.0 8.2 11.0 11.8 23.6 4.24 20 000 1.6 5.8 6.8 9.0 11.4 12.5 25.0 4.16 4 400 0.7 4.0 6.0 8.0 10.8 11.4 22.8 3.94 20 000 1.6 5.5 6.6 9.0 11.2 12.1 24.2 4.02 5 400 0.4 2.8 4.0 5.8 7.0 7.8 15.6 2.77 20 000 0.6 3.2 4.4 6.0 7.8 8.0 16.0 2.63 6 400 0.9 4.3 6.1 8.0 10.8 11.6 23.2 4.02 20 000 1.7 5.5 7.1 9.2 11.5 12.8 25.6 4.16 7 400 0.6 3.8 5.8 7.7 10.5 11.5 23.0 4.16 20 000 1.5 5.4 6.0 8.8 11.0 11.9 23.8 4.31 8 400 0.5 2.8 4.2 5.6 7.2 8.0 16.0 2.77 20 000 1.0 3.4 4.4 6.2 7.9 8.3 16.6 2.85 注: 配方3为 配方1+3%BZ-FFT-I+3%BZ-DFT; 配方4为配方1+3%BZ-FFT-I+4%复合碳酸钙;配方5为配方1+3%BZ-FFT-I+2%BZ-DFT+4%复合碳酸钙;配方6为配方2+3%BZ-FFT-I+3%BZ-DFT;配方7为配方2+3%BZ-FFT-I+4%复合碳酸钙;配方8为配方2+3%BZ-FFT-I+2%BZ-DFT+4%复合碳酸钙。试验条件6.9 MPa,130 ℃。 表 3 页岩油水平井水基钻井液的基本性能
Table 3 Basic properties of the water-based drilling fluids used in horizontal shale oil wells
钻井液 测试条件 密度/
(kg·L–1)塑性黏度/
(mPa·s)动切力/
Pa动塑比 静切力/
PaAPI滤失量/
mLpH值 高温高压
滤失量/mLBH-KSM-Shale 老化前 1.45 37 13.5 0.36 3.5/8.0 2.0 8.5 老化后 1.45 35 14.5 0.41 3.0/5.5 1.6 8.0 7.0 BH-WEI-Shale 老化前 1.45 39 16.0 0.41 4.0/9.0 2.2 9.0 老化后 1.45 43 15.0 0.35 2.0/3.0 1.8 8.5 8.8 注:老化条件在130 ℃下,滚动16 h,下同。 表 4 岩油水平井水基钻井液抗岩屑污染试验结果
Table 4 Resistance of the water-based drilling fluids used in horizontal shale oil wells to cutting pollution
钻井液 测试
条件塑性
黏度/
(mPa·s)动切力/
Pa静切力/
PaAPI滤
失量/
mLpH值 高温
高压滤
失量/
mLBH-KSM-Shale 老化前 25 23.5 5.5/12.0 2.2 8.5 老化后 35 24.5 4.0/7.5 2.0 8.0 8.4 BH-WEI-Shale 老化前 27 26.0 6.0/13.0 3.0 9.0 老化后 33 22.0 5.0/7.5 1.8 8.5 8.0 表 5 部分应用井的钻井技术指标
Table 5 Drilling technical indicators in partial wells applied the water-based drilling fluids
序号 井号 完钻井深/m 水平段长/m 钻井液 井径扩大率,% 钻井周期/d 机械钻速/(m·h−1) 1 GD1701H 5 465.00 1 984.00 BH-KSM-shale 55.21 13.26 2 GY1-1-4H 4 650.00 1 108.93 BH-KSM-shale 92.46 13.36 3 GY2-1-1H 4 508.00 9 76.68 BH-KSM-shale 6.74 56.25 10.20 4 GY1-5-1H 5 293.00 1 934.00 BH-KSM-shale 8.31 70.32 11.48 5 GY7-3-5H 4 502.00 1 675.00 BH-WEI-shale 6.30 19.89 21.96 6 GY2-1-4H 4 526.00 1 403.00 BH-KSM-shale 7.55 25.00 16.34 7 GY10-1-1H 4 036.00 1 799.00 BH-KSM-shale 6.21 34.00 15.90 8 GY1-1-3H 4 888.00 1 402.00 BH-KSM-shale 30.96 12.19 9 GY1-1-2H 5 166.00 1 750.00 BH-KSM-shale 7.22 42.21 13.42 10 GY1-1-9H 5 806.00 1 980.13 BH-KSM-shale 6.53 61.46 13.55 表 6 GY1-1-9H井三开井段钻井液性能
Table 6 Properties of the drilling fluids in the third spud of Well GY1-1-9H
井深/m 密度/(kg·L–1) 漏斗黏度/s 塑性黏度/(mPa·s) 动切力/Pa 动塑比 静切力/Pa API滤失量/mL 高温高压滤失量/mL 摩阻系数 3 019.00 1.37 41 30 12.0 0.40 2.0/4.0 4.2 8.0 0.06 3 769.00 1.48 50 42 17.0 0.40 2.5/5.0 3.8 7.2 0.08 4 201.00 1.49 57 31 14.5 0.47 3.0/6.0 4.0 6.8 0.05 4 623.00 1.51 60 31 15.0 0.48 3.5/6.0 3.6 7.4 0.06 4 979.00 1.57 64 40 21.5 0.54 3.5/6.0 3.4 7.0 0.07 5 472.00 1.59 70 48 25.0 0.52 4.5/6.5 3.2 6.6 0.08 5 617.00 1.59 65 46 23.0 0.50 4.0/7.0 3.8 6.2 0.06 5 806.00 1.59 66 50 23.5 0.47 5.0/7.5 3.6 7.0 0.06 -
[1] 胡文瑄,姚素平,陆现彩,等. 典型陆相页岩油油层系成岩过程中有机质演化对储集性的影响[J]. 石油与天然气地质,2019,40(5):947–956. doi: 10.11743/ogg20190501 HU Wenxuan, YAO Suping, LU Xiancai, et al. Effects of organic matter evolution on oil reservoir property during diagenesis of typical continental shale sequences[J]. Oil and Gas Geology, 2019, 40(5): 947–956. doi: 10.11743/ogg20190501
[2] 杜金虎, 李建忠, 郭彬程, 等. 中国陆相致密油[M]. 北京: 石油工业出版社, 2016. DU Jinhu, LI Jianzhong, Guo Bincheng, et al. Continental tight oil in China[M]. Beijing: Petroleum Industry Press, 2016.
[3] 张宇,赵林,王炳红,等. 流-固-化-热耦合的陆相页岩井壁稳定力学模型及应用[J]. 特种油气藏,2019,26(3):163–168. ZHANG Yu, ZHAO Lin, WANG Binhong, et al. Fluid-solid-chemical-thermal coupling mechanical model of wellbore stability for continental shale and its application[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 163–168.
[4] 林永学,甄剑武. 威远区块深层页岩气水平井水基钻井液技术[J]. 石油钻探技术,2019,47(2):21–27. doi: 10.11911/syztjs.2019022 LIN Yongxue, ZHEN Jianwu. Research and application of deep shale gas water based drilling fluid technology[J]. Petroleum Drilling Techniques, 2019, 47(2): 21–27. doi: 10.11911/syztjs.2019022
[5] 彭君,周勇水,李红磊,等. 渤海湾盆地东濮凹陷盐间细粒沉积岩岩相与含油性特征[J]. 断块油气田,2021,28(2):10–18. PENG Jun, ZHOU Yongshui, LI Honglei, et al. Lithofacies and oil-bearing characteristics of fine-grained sedimentary rocks of salt-layers in Dongpu Sag, Bohai Bay Basin[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 10–18.
[6] 杨绍存,李长洪,施宝海,等. 大港油田页岩油水平井地质导向技术研究与应用:以GD区块GD 2H井为例[J]. 录井工程,2018,29(4):24–28. doi: 10.3969/j.issn.1672-9803.2018.04.005 YANG Shaocun, LI Changhong, SHI Baohai, et al. Application of geosteering technology for shale oil horizontal wells in Dagang Oilfield: a case study on GD 2H Well in GD Block[J]. Mud Logging Engineering, 2018, 29(4): 24–28. doi: 10.3969/j.issn.1672-9803.2018.04.005
[7] 刘毅. 渤海湾盆地济阳坳陷沙河街组页岩油储层特征研究[D]. 成都: 成都理工大学, 2018. LIU Yi. Study on shale oil reservoir characteristics of shahejie formation in Jiyang depression, Bohai Bay Basin[D]. Chengdu: Chengdu University of Technology, 2018.
[8] 李克向. 保护油气层钻井完井技术[M]. 北京: 石油工业出版社, 1993. LI Kexiang. Drilling and completion technology for protecting oil and gas reservoir[M]. Beijing: Petroleum Industry Press, 1993.
[9] 张君峰,毕海滨,许浩,等. 国外致密油勘探开发新进展及借鉴意义[J]. 石油学报,2015,36(2):127–137. doi: 10.7623/syxb201502001 ZHANG Junfeng, BI Haibin, XU Hao, et al. New progress and reference significance of overseas tight oil exploration and development[J]. Acta Petrolei Sinica, 2015, 36(2): 127–137. doi: 10.7623/syxb201502001
[10] 闫林,陈福利,王志平,等. 我国页岩油有效开发面临的挑战及关键技术研究[J]. 石油钻探技术,2020,48(3):63–69. doi: 10.11911/syztjs.2020058 YAN Lin, CHEN Fuli, WANG Zhiping, et al. Challenges and technical countermeasures for effective development of shale oil in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 63–69. doi: 10.11911/syztjs.2020058
[11] 罗诚,吴婷,朱哲显. 硬脆性泥页岩井壁稳定性研究[J]. 西部探矿工程,2013,25(6):50–52. doi: 10.3969/j.issn.1004-5716.2013.06.017 LUO Cheng, WU Ting, ZHU Zhexian. Study on the wellbore stability of hard brittle shale[J]. West-China Exploration Engineering, 2013, 25(6): 50–52. doi: 10.3969/j.issn.1004-5716.2013.06.017
[12] 李栓,张家义,秦博,等. BH-KSM钻井液在冀东油田南堡3号构造的应用[J]. 钻井液与完井液,2015,32(2):93–96. doi: 10.3969/j.issn.1001-5620.2015.02.025 LI Shuan, ZHANG Jiayi, QIN Bo, et al. Application of BH-KSM drilling fluid in Nanpu 3 Structure of Jidong Oilfied[J]. Drilling Fluid & Completion Fluid, 2015, 32(2): 93–96. doi: 10.3969/j.issn.1001-5620.2015.02.025
[13] 王信,张民立,庄伟,等. 高密度水基钻井液在小井眼水平井中的应用[J]. 钻井液与完井液,2019,36(1):65–69. doi: 10.3969/j.issn.1001-5620.2019.01.013 WANG Xin, ZHANG Minli, ZHUANG Wei, et al. Application of high density water based drilling fluid system in horizontal slim hole drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(1): 65–69. doi: 10.3969/j.issn.1001-5620.2019.01.013
[14] 王伟吉. 基于石墨烯修饰的超低渗透成膜剂制备及性能评价[J]. 石油钻探技术,2021,49(1):59–66. WANG Weiji. Preparation and performance evaluations of an ultra-low permeability film-forming agent based on graphene modification[J]. Petroleum Drilling Techniques, 2021, 49(1): 59–66.
[15] 杨灿,董超,饶开波,等. 官东1701H页岩油长水平井激进式水力参数设计[J]. 西部探矿工程,2019,31(3):24–26. YANG Can, DONG Chao, RAO Kaibo, et al. Guandong 1701H shale oil long horizontal well radical hydraulic parameter design western exploration project[J]. West-China Exploration Engineering, 2019, 31(3): 24–26.
-
期刊类型引用(6)
1. 宋舜尧,周博宇,刘晓慧,杨飞,马忠梅,王海柱. 页岩油储层环保型高性能水基钻井液体系研究及应用. 化学研究与应用. 2024(08): 1767-1775 . 百度学术
2. 高书阳. 苏北陆相页岩油高性能水基钻井液技术. 石油钻探技术. 2024(04): 51-56 . 本站查看
3. 秦春,刘纯仁,李玉枝,王治国,陈文可. 苏北断块页岩油水平井钻井提速关键技术. 石油钻探技术. 2024(06): 30-36 . 本站查看
4. 王中华. 国内钻井液技术现状与发展建议. 石油钻探技术. 2023(04): 114-123 . 本站查看
5. 李明辉,王凯,王清臣. 水基钻井液固相分布与控制——以苏里格东部气井为例. 钻井液与完井液. 2023(05): 611-616 . 百度学术
6. 迟建功. 大庆古龙页岩油水平井钻井技术. 石油钻探技术. 2023(06): 12-17 . 本站查看
其他类型引用(2)