随钻电阻率成像测井仪定量评价地层界面探究

康正明, 柯式镇, 李新, 倪卫宁, 李飞

康正明, 柯式镇, 李新, 倪卫宁, 李飞. 随钻电阻率成像测井仪定量评价地层界面探究[J]. 石油钻探技术, 2020, 48(4): 124-130. DOI: 10.11911/syztjs.2020087
引用本文: 康正明, 柯式镇, 李新, 倪卫宁, 李飞. 随钻电阻率成像测井仪定量评价地层界面探究[J]. 石油钻探技术, 2020, 48(4): 124-130. DOI: 10.11911/syztjs.2020087
KANG Zhengming, KE Shizhen, LI Xin, NI Weining, LI Fei. Probe into Quantitative Stratigraphic Interface Evaluation Using a Resistivity Imaging LWD Tool[J]. Petroleum Drilling Techniques, 2020, 48(4): 124-130. DOI: 10.11911/syztjs.2020087
Citation: KANG Zhengming, KE Shizhen, LI Xin, NI Weining, LI Fei. Probe into Quantitative Stratigraphic Interface Evaluation Using a Resistivity Imaging LWD Tool[J]. Petroleum Drilling Techniques, 2020, 48(4): 124-130. DOI: 10.11911/syztjs.2020087

随钻电阻率成像测井仪定量评价地层界面探究

基金项目: 国家科技重大专项“低渗透储层高精度随钻成像技术研究”(编号:2016ZX05021-002)和陕西省教育厅科学研究计划重点项目“智能PDC钻头切削深度控制对钻井过程中粘滑振动抑制的研究”(编号:20JS125)联合资助
详细信息
    作者简介:

    康正明(1989—),男,陕西靖边人,2014年毕业于西安石油大学勘查技术与工程专业,2019年获中国石油大学(北京)地质资源与地质工程专业博士学位,讲师,主要从事电法测井理论方法研究。E-mail:190720@xsyu.edu.cn

  • 中图分类号: P631.8+.11

Probe into Quantitative Stratigraphic Interface Evaluation Using a Resistivity Imaging LWD Tool

  • 摘要:

    随钻电阻率成像测井仪不仅可以通过井壁电成像直观显示微小的地质体特征,还具有识别地层界面的能力。为了探索随钻电阻率成像测井仪在界面处的测井响应特征,利用三维有限元方法,研究了其具有方位性时的地层界面测井响应规律,并根据模拟结果建立了地层界面参数定量计算模型。结果表明,该仪器在水平井中不同方位钮扣电极的电阻率测量差值和仪器与地层界面的距离呈较好的幂指数关系;该仪器在斜井中与地层界面的夹角和不同方位钮扣电极电阻率曲线犄角间的最大距离呈幂指数关系,且基本不受地层界面上下地层电阻率对比度的影响。建立的地层界面参数解释模型表明:仪器与地层界面的距离小于1.00 m,可以识别出地层界面;仪器与地层界面夹角小于20°时,可定量计算出二者夹角。研究结果为随钻电阻率成像测井的地质工程应用提供了理论依据。

    Abstract:

    Resistivity imaging LWD tool can not only visually display the characteristics of micro geological bodies through borehole wall electric imaging, but also can identify the formation interface. In order to explore the logging response mechanism of the tool at the interface, this paper studies the logging response law of the azimuthal resistivity imaging LWD tool at formation interface by using the three-dimensional finite element method. In doing so, it established a quantitative calculation model of formation interface parameters according to the simulation results. The results showed that the resistivity measurement difference of different azimuthal button electrodes of the tool exhibited a good power exponent relationship with the distance from tool to the formation interface in horizontal wells. The angle between the tool and formation interface and the maximum distance between resistivity curve spikes of different azimuthal button electrodes was power exponentially in deviated wells, which is not affected by resistivity contrast of the upper and lower strata at the formation interface. The model for the formation interface parameters interpretation indicated that the tool can be recognized within 1.00 m to the horizontal interface, and the angle can be calculated quantitatively when the angle between the tool and formation interface is less than 20 degrees. The research results can provide a theoretical basis for the application of a resistivity imaging LWD tool in geological engineering.

  • 图  1   螺绕环结构示意

    Figure  1.   Schematic diagram of the toroid coil structure

    图  2   模拟仪器结构示意

    Figure  2.   Schematic diagram of the analog instrument

    图  3   电位场和电流场分布特征

    Figure  3.   Distribution characteristics of potential field and current field

    图  4   水平井中不同方位钮扣电极测井响应

    Figure  4.   Logging response characteristics of different azimuthal button electrodes in horizontal welll

    图  5   仪器地层边界探测能力

    Figure  5.   Formation boundary detection capability of theinstrument

    图  6   斜井地层界面模型

    Figure  6.   Formation boundary model for deviated well

    图  7   仪器与地层界面夹角不同时B1的测井响应特征

    Figure  7.   Logging response characteristics of B1 at different angles between instrument and formation interface

    图  8   不同电阻率对比度下仪器视电阻率与地层界面距离MD的关系

    Figure  8.   Relationship between instrument apparent resistivity and formation interfacial distance MD at different resistivity contrasts

    图  9   边界探测参数与地层界面距离的关系曲线

    Figure  9.   Relationship curve between boundary detection parameters and formation interfacial distance

    图  10   仪器与地层夹角和犄角间距离的关系曲线

    Figure  10.   Relationship curve of angle between instrument and formation and distance between horns

    表  1   地层界面距离相对误差分析

    Table  1   Analysis of relative error for formation interfacial distance

    Z理论值/mDE,%Z模型计算值/m相对误差,%
    0.100172.88 0.0946.00
    0.20080.640.1838.50
    0.30049.770.2739.00
    0.40034.300.3668.50
    0.50024.250.4745.20
    0.60018.030.5813.17
    0.70013.820.6871.86
    0.80010.680.7980.25
    0.900 8.410.9040.44
    1.000 6.721.0050.50
    1.100 5.571.0871.18
    1.200 4.571.1732.25
    1.300 3.491.2801.54
    下载: 导出CSV

    表  2   模型夹角相对误差分析

    Table  2   Analysis of relative error of the model angle

    θ理论值/(°)Dmax/mθ模型计算值/(°)夹角相对误差,%
    2.5003.75 2.5050.20
    5.0001.85 4.8473.06
    7.5001.00 8.0547.39
    10.0000.75 9.9260.74
    15.0000.4014.5542.97
    20.0000.2518.0769.62
    25.0000.0129.00516.02
    30.0000.0129.0053.32
    下载: 导出CSV
  • [1] 路保平,丁士东,何龙,等. 低渗透油气藏高效开发钻完井技术研究主要进展[J]. 石油钻探技术, 2019, 47(1): 1–7. doi: 10.11911/syztjs.2019027

    LU Baoping, DING Shidong, HE Long, et al. Key achievement of drilling & completion technologies for the efficient development of low permeability oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 1–7. doi: 10.11911/syztjs.2019027

    [2] 李安宗,李启明,朱军,等. 方位侧向电阻率成像随钻测井仪探测特性数值模拟分析[J]. 测井技术, 2014, 38(4): 407–410. doi: 10.3969/j.issn.1004-1338.2014.04.006

    LI Anzong, LI Qiming, ZHU Jun, et al. Numerical analysis of logging response for LWD azimuthal laterolog resistivity imaging tool[J]. Well Logging Technology, 2014, 38(4): 407–410. doi: 10.3969/j.issn.1004-1338.2014.04.006

    [3] 路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060

    LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060

    [4]

    ALLOUCHE M, CHOW S, DUBOURG I, et al. High-resolution images and formation evaluation in slim holes from a new logging-while-drilling azimuthal laterolog device[R]. SPE 131513, 2010.

    [5]

    VAN OS R, DION D, CHEUNG P. Device and method of measuring depth and azimuth: US7873475[P]. 2009-01-18.

    [6]

    KOEPSELL R, SHIM Y H, KOK J C L, et al. Advanced LWD imaging technology in the Niobrara: case study[R]. SPE 143828, 2011.

    [7]

    ORTENZI L, DUBOURG I, VAN OS R, et al. New azimuthal resistivity and high-resolution imager facilitates formation evaluation and well placement of horizontal slim boreholes[J]. Petrophysics, 2011, 53(3): 197–207.

    [8]

    LV Zonggang, PENG Hairun, XIA Qin, et al. Uncovering the potential of thin, tight gas reservoirs in Sichuan Basin, China: new development campaign using new LWD imaging technology and innovative interpretation workflows[R]. SPE 160173, 2012.

    [9]

    PRAMMER M G, MORYS M, KNIZHNIK S, et al. A high-resolution LWD resistivity imaging tool: field testing in vertical and highly deviated boreholes[J]. Petrophysics, 2009, 50(1): 49–66.

    [10]

    KUMAR R, OTAIBI S F, MUMTAZ A, et al. Effective geosteering using high-resolution electrical images and deep azimuthal resistivity[R]. SPE 172179, 2014.

    [11]

    FULDA C, HARTMANN A, GOREK M. High resolution electrical imaging while drilling[R]. SPWLA-2010-46830, 2010.

    [12]

    RITTER R N, CHEMALI R, LOFTS J, et al. High resolution visualization of near wellbore geology using while-drilling electrical images[R]. SPWLA-2004-PP, 2004.

    [13] 康正明, 柯式镇, 李新, 等. 钻头电阻率测井仪器探测特性研究[J]. 石油科学通报, 2017, 2(4): 457–465.

    KANG Zhengming, KE Shizhen, LI Xin, et al. The detection characteristics study of the at-bit resistivity logging tool[J]. Petroleum Science Bulletin, 2017, 2(4): 457–465.

    [14]

    KANG Zhengming, KE Shizhen, LI Xin, et al. 3D FEM simulation of responses of LWD multi-mode resistivity imaging sonde[J]. Applied Geophysics, 2018, 15(3/4): 401–412.

    [15] 倪卫宁, 康正明, 路保平, 等. 随钻高分辨率电阻率成像仪器探测特性研究[J]. 石油钻探技术, 2019, 47(2): 114–119. doi: 10.11911/syztjs.2019005

    NI Weining, KANG Zhengming, LU Baoping, et al. The detection characteristics of a high resolution resistivity imaging instrument while drilling[J]. Petroleum Drilling Techniques, 2019, 47(2): 114–119. doi: 10.11911/syztjs.2019005

    [16] 李铭宇, 柯式镇, 康正明, 等. 螺绕环激励式随钻侧向测井仪测量强度影响因素及响应特性[J]. 石油钻探技术, 2018, 46(1): 128–134.

    LI Mingyu, KE Shizhen, KANG Zhengming, et al. Influence factors of measured signal intensity and the response characteristics of the toroidal coil excitation LWD laterolog instrument[J]. Petroleum Drilling Techniques, 2018, 46(1): 128–134.

    [17]

    JING Jiankun, KANG Zhengming, KE Shizhen, et al. The imaging resolution effect of LWD resistivity imaging tool using numerical simulation method[R]. EAGE-We_P09_12, 2019.

    [18]

    ARPS J J. Inductive resistivity guard logging apparatus including toroidal coils mounted on a conductive stem: US3305771[P]. 1967-02-21.

    [19]

    GIANZERO S, CHEMALI R, LIN Y, et al. A new resistivity tool for measurement-while-drilling[R]. SPWLA-1985-A, 1985.

    [20] 刘国胜,杨海东,汤健超. 复杂地质层中电磁波测井响应特性的数值研究[J]. 中南大学学报(自然科学版), 2013, 44(2): 656–661.

    LIU Guosheng, YANG Haidong, TANG Jianchao. Numerical investigation for responses of electrical logging-while-drilling in complex formations[J]. Journal of Central South University (Natural Science Edition), 2013, 44(2): 656–661.

    [21]

    CHEN Jiefu. An efficient discontinuous Galerkin finite element method with nested domain decomposition for simulations of microresistivity imaging[J]. Journal of Applied Geophysics, 2015, 114: 116–122. doi: 10.1016/j.jappgeo.2015.01.006

  • 期刊类型引用(33)

    1. 邹亦玮,代丹,王义昕,耿晨梓,朱思佳,姚晓. 有机膦酸盐缓凝剂异常增稠油井水泥浆作用机理. 钻井液与完井液. 2025(01): 110-116 . 百度学术
    2. 何新星,严焱诚,朱礼平,王希勇,朱化蜀,王治国. 四川盆地威荣深层页岩气安全与提速钻井技术. 石油实验地质. 2024(03): 630-637 . 百度学术
    3. 贾聚全. 吉木萨尔页岩油水平井固井技术. 承德石油高等专科学校学报. 2024(05): 17-23 . 百度学术
    4. 张晴,任重阳,张然舜,顾东清,赵迪斐. 基于文献计量特征的我国深层页岩研究进展及趋势(2012—2022). 非常规油气. 2023(01): 21-26 . 百度学术
    5. 李成嵩,李社坤,范明涛,张海雄,袁明叶,雷刚. 高密度弹韧性水泥浆力学数值模拟. 钻井液与完井液. 2023(02): 233-240 . 百度学术
    6. 丁士东,陆沛青,郭印同,李早元,卢运虎,周仕明. 复杂环境下水泥环全生命周期密封完整性研究进展与展望. 石油钻探技术. 2023(04): 104-113 . 本站查看
    7. 杨春和,王磊,曾义金,郭印同,杨广国,刘奎. 考虑多因素的固井二界面胶结抗拉强度室内评价方法. 石油钻探技术. 2023(04): 48-54 . 本站查看
    8. 冯瑞阁,李玮,孟仁洲,王俊杰. 星探1井韧性防窜水泥浆技术. 钻井液与完井液. 2023(05): 658-664 . 百度学术
    9. 丁士东,刘奎,刘小刚,周仕明,陶谦,李鹏程. 环空加压固井对双层套管水泥环界面径向应力的影响. 石油钻探技术. 2022(01): 30-37 . 本站查看
    10. 杨炳祥,刘浩亚,魏浩光,曾敏,何世明. 自愈合水泥浆体系在四川地区的应用. 钻井液与完井液. 2022(01): 65-70 . 百度学术
    11. 何立成. 油气井固井多棱石英砂冲洗液的研制与现场应用. 石油钻探技术. 2022(03): 46-50 . 本站查看
    12. 匡立新,陶谦. 渝东地区常压页岩气水平井充氮泡沫水泥浆固井技术. 石油钻探技术. 2022(03): 39-45 . 本站查看
    13. 幸雪松,孙翀,许明标,王晓亮,杨晓榕,彭石峰. 提高水泥层间封隔能力的低密度弹性密封水泥浆性能评价. 油田化学. 2022(02): 222-227 . 百度学术
    14. 董志明,曾勇,王海平. 苏里格气田水平段泥页岩对水泥浆性能影响评价. 钻采工艺. 2022(04): 134-140 . 百度学术
    15. 李成,耿晨梓,代丹,王春雨,宋维凯,姚晓. 废弃玻璃粉对水泥石高温抗压强度和微观结构的影响. 硅酸盐通报. 2022(09): 3219-3226 . 百度学术
    16. 沈彬亮. 油基钻井液条件下页岩气侧钻水平井固井技术. 新疆石油天然气. 2021(01): 29-33+2 . 百度学术
    17. 王彦祺,贺庆,龙志平. 渝东南地区页岩气钻完井技术主要进展及发展方向. 油气藏评价与开发. 2021(03): 356-364 . 百度学术
    18. 李慕君. 复杂井况条件下YY2侧钻水平井固井技术. 内蒙古石油化工. 2021(06): 74-77 . 百度学术
    19. 刘军康,陶谦,沈炜,闫联国,丁安徐. 低残余应变弹韧性水泥浆体系在平桥南区块页岩气井中的应用. 油气藏评价与开发. 2020(01): 90-95 . 百度学术
    20. 吴江,李炎军,张万栋,杨玉豪. 南海莺歌海盆地中深层高温高压水平井钻井关键技术. 石油钻探技术. 2020(02): 63-69 . 本站查看
    21. 何吉标,彭小平,刘俊君,屈勇,袁欢,彭博. 抗高交变载荷水泥浆的研制及其在涪陵页岩气井的应用. 石油钻探技术. 2020(03): 35-40 . 本站查看
    22. 彭兴,周玉仓,龙志平,张树坤. 南川地区页岩气水平井优快钻井技术进展及发展建议. 石油钻探技术. 2020(05): 15-20 . 本站查看
    23. 王健. 国内深层页岩气钻井难点及技术进展. 石油化工应用. 2020(12): 1-5+20 . 百度学术
    24. 史彬,陈敏,饶晓东,梅丽,黄永智. 页岩气井套管损坏原因分析及认识. 钢管. 2018(03): 66-71 . 百度学术
    25. 王磊,曾义金,张青庆,徐峰,杨春和,郭印同,陶谦,刘杰. 高温环境下油井水泥石力学性能试验. 中国石油大学学报(自然科学版). 2018(06): 88-95 . 百度学术
    26. 何吉标. 平桥区块深层高压页岩气水平井固井技术. 江汉石油职工大学学报. 2017(04): 30-33 . 百度学术
    27. 李扬,齐鹏飞,卢三杰. 页岩气水平井固井技术难点分析. 中国石油石化. 2017(11): 70-71 . 百度学术
    28. 马小龙. 焦石坝工区页岩气整体固井技术. 石油钻采工艺. 2017(01): 57-60 . 百度学术
    29. 李建山. 泾河油田水平井固井难点与对策研究. 石油钻探技术. 2017(06): 19-23 . 本站查看
    30. 张洪生,方超. 6500HP型压裂泵主要技术参数的优化研究. 机械制造. 2016(04): 51-53 . 百度学术
    31. 龙志平,王彦祺,周玉仓. 隆页1HF页岩气井钻井关键技术. 石油钻探技术. 2016(02): 16-21 . 本站查看
    32. 吴江,朱新华,李炎军,杨仲涵. 莺歌海盆地东方13-1气田高温高压尾管固井技术. 石油钻探技术. 2016(04): 17-21 . 本站查看
    33. 惠帅. 工厂化水平井固井技术研究. 中国石油和化工. 2015(11): 66-67 . 百度学术

    其他类型引用(5)

图(10)  /  表(2)
计量
  • 文章访问数:  845
  • HTML全文浏览量:  210
  • PDF下载量:  94
  • 被引次数: 38
出版历程
  • 收稿日期:  2019-12-26
  • 修回日期:  2020-06-13
  • 网络出版日期:  2020-06-23
  • 刊出日期:  2020-06-30

目录

    /

    返回文章
    返回