An Improved Integrated Reverse Washing, Measuring and Adjusting Zonal Water Injection Process in the Bohai Oilfield
-
摘要:
为解决渤海油田常规分注工艺反洗井难、调配效率及调配合格率低的问题,开展了可反洗测调一体分层注水研究。通过配套测调一体配水器、可反洗井封隔器,优化防砂、注水管柱结构,实现了不动管柱反洗井和测调一体功能,形成了渤海油田可反洗测调一体分层注水工艺。渤海油田10口注入困难的井应用该工艺进行了不动管柱反洗井作业,并进行了30井次的调配作业。现场应用结果表明,反洗井工具性能可靠,开关灵活,洗井效果良好,缓解了注水压力升高现象,降低了酸化频次;测调效率显著提高,平均单井调配周期仅需10 h,相较常规分注工艺调配周期2~3 d大幅降低。可反洗测调一体分层注水工艺的成功应用,验证了该工艺的可行性,为渤海油田分层注水开发提供了新的技术手段。
Abstract:The Bohai Oilfield has experienced challenges with its conventional zonal injection processes. Specifically, there have been difficulties with reverse washing, along with low distributing efficiency and low distributing qualified rate. To improve the situation, a study was carried out on the integrated reverse washing, measuring and adjusting zonal water injection process. By developing the integrated measuring/adjusting water distributor and reverse washing packer, the structures of sand control and water injection strings were optimized, and the integrated reverse washing/measuring/adjusting function with fixed string were achieved, thus forming the integrated reverse washing, measuring and adjusting zonal water injection process in the Bohai Oilfield. This process was applied in 10 wells that had difficulty in water injection. In fact, thirty well times of distribution adjustment were performed in the Bohai Oilfield. Field applications suggested that the performance of reverse washing tool was reliable, the switching was flexible, and the well washing effect was good, which effectively alleviated the increased water injection pressure and reduced the frequency of acidizing. The measuring/adjusting efficiency was significantly improved, and the average single well distribution adjustment cycle was shortened to 10 hours, which was significant shorter than that of the conventional zonal injection processes (2–3 days). The successful applications of the integrated reverse washing, measuring and adjusting zonal water injection process verified the feasibility of this process and provided new technical ideas for the zonal water injection development of Bohai Oilfield and thereby improve the efficiency of acidizing.
-
水泥环具有长久有效的层间封隔能力是实现油气田开发增产的前提,是油气井长寿命开采的保障[1-2]。然而,固井水泥石属于有先天微观缺陷的脆性材料,存在形变能力差、抗拉强度低、抗冲击和抗破裂性能差等固有缺陷[3-6],在后续施工(如试压、射孔、压裂及开采等)过程中,受温度压力变化、冲击和震动等因素影响,易发生破裂,导致水泥环的力学完整性受到破坏,轻则造成环空带压、油气水窜,重则导致油气井报废[7-9]。因此,对油井水泥浆进行优化,改善对应水泥石的力学性能显得尤为重要。
水泥基材料是一种多相复合材料[10],在不同尺度上具有不同的微观结构,这些微观结构又直接影响其宏观力学性能。研究发现,水泥基材料的破坏多是内部裂纹逐步发展,扩张为宏观裂缝,进而导致其失效的过程[11-12]。目前,在固井设计和施工时,多采用纤维来改善水泥石的力学性能[13-15]。纤维可在水泥石基体间起到“搭桥”作用,以“拉筋”的作用方式来改善油井水泥石的力学性能。水泥浆中常用的纤维材料包括无机纤维(如玻璃纤维、碳纤维等)、合成纤维(如聚酯、聚丙烯等纤维)和植物纤维(如竹、麻等纤维)。然而,这些纤维存在以下缺陷:1)密度较低,混浆后分散困难,易悬浮于浆体表面;2)表面疏水、润湿性能差,混浆时易团聚,泵送时易阻塞管线,造成憋泵,影响施工安全[16-18]。同时,大多数研究都是从单一尺度纤维入手,并未进行基体材料的多尺度特性研究,实现不同尺度纤维的协同增韧效果[11-12]。
针对上述问题,笔者优选了3种尺度拉伸模量高、拉伸强度高且分散性好的无机纤维进行复配,形成了油井水泥用多尺度纤维增韧剂BCE-230S,并以该增韧剂为基础配制了多尺度纤维增韧水泥浆。该水泥浆较单一尺度纤维水泥浆具有明显的协同增韧效果,且不影响施工安全性。目前该水泥浆已在冀东油田储层低渗透压裂井中累计应用10余井次,应用效果显著。
1. 试验材料与方法
1.1 试验材料及仪器
试验材料:G 级油井水泥,分散剂 CF40S,缓凝剂BXR-200L,降滤失剂BCG-200L,消泡剂 G603(天津中油渤星工程科技有限公司);3种无机纤维,其基本物性参数见表 1 。
表 1 无机纤维的基本物性参数Table 1. Basic parameters of inorganic fibers纤维种类 级别 主要成分 长度/μm 直径/μm 密度/(g∙cm–3) 拉伸强度/GPa 拉伸模量/GPa 纤维A 纳米级 碳化硅、氧化铁 50~100 0.1~0.6 3.21 10.0 550 纤维B 微米级 氧化硅、氧化钙 20~90 1.0~5.0 2.80 20.0 180 纤维C 毫米级 氧化镁、氧化铝 2 000~3 000 7.0~30.0 2.80 3.5 100 试验仪器:水浴箱,六速旋转黏度计,YJ-2001 型匀加荷压力试验机,OWC-9350A 常压稠化仪,8040D增压稠化仪,XJJY-5C简支梁冲击试验机,TAW-2000 型三轴岩石力学试验机。
1.2 测试方法及试样尺寸
参照国家标准 《油井水泥试验方法》(GB/T 19139—2012),对水泥浆进行配制、养护和测试,其中,无机纤维采用干混配料,养护条件为80 ℃×7 d。
采用匀加荷压力试验机测定水泥石的抗压强度,试样为正方体,尺寸为 50.8 mm×50.8 mm×50.8 mm;采用三轴力学试验机测定水泥石的杨氏模量,试样为圆柱体,尺寸为ϕ25.0 mm×50.0 mm,围压为0 ;采用简支梁冲击试验机测定水泥石的抗冲击功,试样为长方体,尺寸为 120.0 mm×15.0 mm×10.0 mm;采用巴西劈裂试验测定水泥石的劈裂抗拉强度,试样为圆柱体,尺寸为ϕ25.0 mm×10.0 mm。
2. 多尺度纤维增韧剂BCE-230S的制备
目前常用的增韧剂在降低水泥石杨氏模量的同时,会大幅降低水泥石的抗压强度。为了评价增韧剂对水泥石抗压强度和杨氏模量的综合影响,定义了抗压强度与杨氏模量比这一测试指标。该指标值越大,说明水泥石不仅具有较高的抗压强度,还具有较低的杨氏模量,即增韧剂的增韧效果更佳。
首先配制了水泥浆基浆,配方为100.0 g胜潍G级水泥+3.5 g降滤失剂BCG-200L+40.5 g水;然后将基浆在80 ℃下养护7 d后,得到水泥石空白样,其抗压强度为45.3 MPa,杨氏模量为9.06 GPa,抗拉强度为1.81 MPa,抗冲击功为1.75 kJ/m2。
2.1 纤维的基本性能
将3种无机纤维(记为纤维A、纤维B和纤维C)加入到水泥浆基浆中,评价其对水泥石力学性能的影响,结果见表2。评价结果表明:纤维A在提高水泥石抗冲击功和抗压强度方面具有较大优势,最佳加量为1.0%;纤维B在降低水泥石杨氏模量方面具有较大优势,最佳加量为5.0%;纤维C在提高水泥石抗拉强度和抗冲击功方面具有较大优势,最佳加量为1.0%。
表 2 3种纤维对水泥石力学性能的影响Table 2. Effects of three kinds of fibers on mechanical properties of cement纤维种类 最佳加
量,%抗拉强度
提高程度,%抗冲击功
提高程度,%抗压强度
提高程度,%杨氏模量
下降程度,%抗压强度/杨氏模量
提高程度,%纤维A 1.0 11.71 20.47 7.14 8.71 17.28 纤维B 5.0 17.14 17.29 2.06 16.90 22.87 纤维C 1.0 24.76 20.51 4.28 10.83 16.87 2.2 3种纤维的配比研究
2.2.1 正交试验
为了提高不同尺度纤维的协同增韧效果,以3种纤维为因素,纤维的配比为水平,以3种纤维各自最佳加量为中心,上下浮动0.5%进行配比,以水泥石养护7 d后的抗拉强度提高程度、抗冲击功提高程度及抗压强度与杨氏模量比值的提高程度为考察指标,设计了3因素3水平的正交试验方案(见表3),通过正交试验确定3种纤维的最佳配比。水泥浆配方为水泥浆基浆+5.0%无机纤维,其中,3种纤维按设计方案配比混拌均匀形成多尺度纤维,再取加入5.0%多尺度纤维的水泥石进行测试,养护条件为80 ℃。
表 3 正交试验设计方案及结果Table 3. Design scheme and results of the orthogonal test序号 纤维A加量,% 纤维B加量,% 纤维C加量,% 抗拉强
度提高
程度,%抗冲击
功提高
程度,%抗压强度/杨氏模量提高程度,% 1 0.5 4.5 0.5 15.51 19.33 14.23 2 0.5 5.0 1.0 22.35 22.46 21.21 3 0.5 5.5 1.5 17.55 24.16 18.36 4 1.0 4.5 1.0 21.07 22.36 19.21 5 1.0 5.0 1.5 15.55 24.27 21.49 6 1.0 5.5 0.5 13.17 19.78 18.16 7 1.5 4.5 1.5 14.22 23.65 17.15 8 1.5 5.0 0.5 13.29 19.26 20.44 9 1.5 5.5 1.0 23.16 22.21 19.11 表 4 抗拉强度极差分析Table 4. Range analysis of tensile strength因素 抗拉强度提高程度,% 极差R 最优方案 K1 K2 K3 纤维A 18.47 16.60 16.89 1.87 A1 纤维B 16.93 17.06 17.96 1.03 B3 纤维C 13.99 22.19 15.77 8.20 C2 表 6 抗压强度/杨氏模量极差分析Table 6. Range analysis of compressive strength/Young’s modulus因素 抗压强度/杨氏模量提高程度,% 极差R 最优方案 K1 K2 K3 纤维A 17.93 19.62 18.90 1.69 A2 纤维B 16.86 21.05 18.54 4.18 B2 纤维C 17.61 19.84 19.00 2.23 C2 从表4可以看出:从水泥石的抗拉强度提高程度来看,纤维C的极差R为8.20,远大于纤维A和纤维B的极差R,说明纤维C对水泥石抗拉强度提高的影响远大于纤维A和纤维B。为使水泥石的抗拉强度提高程度最大,3种纤维的最优配比方案为A1B3C2,即纤维A∶纤维B∶纤维C=1∶11∶2。
从表5可以看出:从水泥石的抗冲击功提高程度来看,纤维C的极差R为4.57,大于纤维A和纤维B的极差R,说明纤维C对水泥石抗冲击功的影响大于纤维A和纤维B。为使水泥石的抗冲击功提高程度最大,3种纤维的最优配比方案为A2B3C3,即纤维A∶纤维B∶纤维C=2∶11∶3。
表 5 抗冲击功极差分析Table 5. Range analysis of impact resistance因素 抗冲击功提高程度,% 极差R 最优方案 K1 K2 K3 纤维A 21.98 22.14 21.71 0.43 A2 纤维B 21.78 22.00 22.05 0.27 B3 纤维C 19.46 22.34 24.03 4.57 C3 从表6可以看出:从水泥石抗压强度与杨氏模量比值的提高程度来看,纤维B的极差R为4.18,大于纤维C和纤维A的极差R,说明纤维B对水泥石抗压强度与杨氏模量比值的影响较大。为使水泥石的抗压强度提高程度更大,杨氏模量降低程度更大,即水泥石抗压强度与杨氏模量的比值最大,3种纤维的最优配比方案为A2B2C2,即纤维A∶纤维B∶纤维C=1∶5∶1。
2.2.2 最优配比
水泥浆配方为水泥浆基浆+5.0%无机纤维,3种配比方案的水泥石在80 ℃条件下养护7 d后测其力学性能,结果如表7所示。从表7可以看出:配比方案1,水泥石抗拉强度的提高程度最大,但抗冲击功及抗压强度与杨氏模量比值的提高程度相对较小;配比方案2,水泥石抗冲击功的提高程度最大,但抗拉强度及抗压强度与杨氏模量比值的提高程度相对较小;配比方案3,水泥石各项力学性能的提高程度较为均衡,均能提高20%以上。综合考虑,确定配比方案3为最优配比,即纤维A∶纤维B∶纤维C=1∶5∶1,3种纤维按该配比复配,制备得到多尺度纤维增韧剂BCE-230S。
表 7 不同配比方案下的水泥石力学性能试验结果Table 7. Experimental results of mechanical properties of cement with different proportion schemes配比方案 纤维配比 抗拉强度提高程度,% 抗冲击功提高程度,% 抗压强度/杨氏模量提高程度,% 1 纤维A∶纤维B∶纤维C=1∶11∶2 24.33 19.77 19.23 2 纤维A∶纤维B∶纤维C=2∶11∶3 18.39 23.37 17.05 3 纤维A∶纤维B∶纤维C=1∶5∶1 23.17 22.57 22.71 3. BCE-230S 加量对水泥浆及水泥石性能的影响
以多尺度纤维增韧剂BCE-230S为主剂,优选配套的缓凝剂、降滤失剂等处理剂,初步形成了多尺度纤维韧性水泥浆体系,配方为水泥浆基浆+0.1 g缓凝剂BXR-200L+增韧剂BCE-230S。为使多尺寸纤维韧性水泥浆体系的性能达到最优,综合考察了增韧剂BCE-230S的加量对水泥浆性能(流变性能、稠化性能和滤失性能等)和对应水泥石力学性能(抗压强度、抗冲击功、抗拉强度和杨氏模量等)的影响,流变试验温度为25 ℃,稠化试验条件为80 ℃×40 MPa×40 min,滤失量试验条件为80 ℃×6.9 MPa,水泥石养护条件为80 ℃×21 MPa。
3.1 BCE-230S加量对水泥浆性能的影响
3.1.1 水泥浆流变性能
采用六速旋转黏度计,测试了BCE-230S的加量对水泥浆流变性能的影响,结果见表8。从表8可以看出,随着BCE-230S的加量增大,水泥浆稠度随之增大;BCE-230S加量为7.0%时,六速旋转黏度计300 r/min转速下的读数为290,即将达到仪器测量读数上限300,说明此时水泥浆稠度相对较高,不宜继续增大BCE-230S的加量。
表 8 BCE-230S加量对水泥浆流变性能的影响Table 8. Effect of BCE-230S dosage on rheological properties of cement slurryBCE-230S加量,% 六速旋转黏度计读数 ϕ3 ϕ6 ϕ100 ϕ200 ϕ300 0 3 5 58 105 148 3.0 5 8 63 121 182 5.0 7 13 92 151 209 7.0 7 13 129 216 290 3.1.2 水泥浆滤失及稠化性能
考察了BCE-230S的加量对水泥浆滤失及稠化性能的影响,结果见表9;BCE-230S加量为5.0%时的水泥浆稠化曲线如图1所示。由表9可知,随着BCE-230S的加量增大,水泥浆的API滤失量相差不大,说明BCE-230S对水泥浆的滤失性能无不利影响。由表9和图1可知,随着BCE-230S的加量增大,水泥浆的稠化时间基本不变,说明BCE-230S对水泥浆的稠化时间基本无影响;且稠化曲线未出现“鼓包”和“包心”等异常现象,说明BCE-230S对水泥浆的稠化性能无不利影响。
表 9 BCE-230S加量对水泥浆滤失量及稠化性能的影响Table 9. Effect of BCE-230S dosage on fluid loss and the thickening properties of cement slurryBCE-230S加量,% 稠化时间/min API滤失量/mL 0 175 46 3.0 176 44 5.0 167 46 7.0 173 44 以上研究结果表明,增韧剂BCE-230S对水泥浆性能无明显不利影响,满足现场施工要求,但考虑水泥浆的流变性能,其加量不宜超过7.0%。
3.2 BCE-230S加量对水泥石力学性能的影响
3.2.1 水泥石的抗拉强度
通过巴西劈裂试验,考察了BCE-230S加量对水泥石抗拉强度的影响,结果如图2所示。由图2可知,水泥石的抗拉强度随着养护时间增长而增大,随着BCE-230S加量增大而增大。养护时间为7 d、BCE-230S加量为5.0%时,水泥石的抗拉强度相对于空白样提高了23.2%;BCE-230S加量为7.0%时,其抗拉强度相对于空白样提高了24.4%。
3.2.2 水泥石的抗冲击功性能
采用简支梁冲击试验机,考察了BCE-230S加量对水泥石抗冲击功的影响,结果如图3所示。由图3可知,随着BCE-230S加量增大,水泥石的抗冲击功能力呈现逐渐增强的趋势。养护7 d条件下,BCE-230S加量为5.0%时,水泥石的抗冲击功能力与空白样相比提高了22.6%;BCE-230S加量为7.0%时,水泥石的抗冲击功能力与空白样相比提高了26.2%。
3.2.3 水泥石的抗压强度
BCE-230S加量对水泥石抗压强度的影响如图4所示。从图4可以看出,养护时间为1 d时,水泥石的抗压强度基本不变;养护时间为7 d时,随着BCE-230S加量增大,水泥石强度呈逐渐增高的趋势。BCE-230S加量为5.0%时,水泥石的抗压强度相对于空白样提高了2.4%;BCE-230S加量为7.0%时,水泥石的抗压强度相对于空白样提高了3.3%。
3.2.4 水泥石的杨氏模量
BCE-230S加量对水泥石杨氏模量的影响如图5所示。从图5可以看出,加入BCE-230S水泥石的杨氏模量与空白样相比均呈下降趋势,且随着BCE-230S的加量增大,水泥石的杨氏模量呈逐渐降低的变化趋势。养护时间为7 d、BCE-230S加量为5.0%时,水泥石的杨氏模量为7.56 GPa,相对于空白样下降16.5%;BCE-230S加量为7.0%时,水泥石的杨氏模量为7.33 GPa,相对于空白样下降19.2%。
综合考虑水泥浆体系性能和对应水泥石的力学性能,确定BCE-230S的最佳加量为5.0%。最终得到的多尺度纤维韧性水泥浆体系的配方为:胜潍G级水泥+3.5%降滤失剂BCG-200L+0.1%缓凝剂BXR-200L+5.0%增韧剂BCE-230S+42.5%水。
4. 现场应用
多尺度纤维韧性水泥浆体系已在冀东油田南堡、高尚堡等低渗透储层区块应用10余井次,固井质量优质,固井第一、二界面平均合格率分别为95.3%和85.4%。与该区块应用常用水泥浆的井相比,2个胶结面的胶结质量均显著提高,分别提高了15.0和32.0百分点;后期压裂改造顺利,压裂过程中井口压力稳定;试油阶段均未发现层间窜流。
以南堡XX-XX井为例介绍多尺度纤维韧性水泥浆体系的具体应用情况。该井是南堡油田 X号构造南堡XX 断块构造较高部位的一口开发井(采油井),为定向井,其钻探目的是压裂开发南堡XX断块 Ed2、Ed3低渗透油藏。该井固井作业存在以下技术难点:1)后期压裂开发对井筒的长期密封完整性要求较高;2)馆陶组底部易坍塌、易井漏,固井施工过程中(起钻、下套管)应保持井内压力平衡;3)井斜角大于40.0°,属于大斜度井,下套管困难,且套管居中度难以保障,易发生偏心。
为保障后期压裂开发,采用多尺度纤维韧性水泥浆封固储层。水泥浆配方为100.0%胜潍水泥+3.5%降滤失剂BCG-200L+5.0%增韧剂BCE-230S+42.5%水,密度为1.92 kg/L,85 ℃滤失量为40 mL,85 ℃稠度系数为1.14 Pa·sn,流性指数n=0.68,游离液为0,上下密度差为0.01 kg/L;85 ℃下的稠化时间为96 min,88 ℃下的温度高点稠化时间为91 min,密度1.95 kg/L时的温度高点稠化时间为98 min,各项性能均满足现场施工要求。
现场水泥浆大样在85 ℃下养护3 d的力学性能:杨氏模量6.6 GPa,泊松比0.18,平均抗压强度38.3 MPa,平均抗拉强度2.05 MPa,满足后期压裂及生产需求。
该井现场固井施工顺利,3 d后测井合格率为100%,优质率为80.3%;后期压裂施工顺利,试油时未见层间窜流。
5. 结 论
1)采用3种尺度的无机纤维复配得到了多尺度纤维增韧剂BCE-230S。与单一尺度纤维相比,该增韧剂具有更好的增韧效果,可协同作用提高水泥石的抗拉强度、抗压强度及抗冲击功的能力,并降低其杨氏模量。
2)现场应用结果表明,多尺度纤维韧性水泥浆体系性能稳定,各项性能参数均能满足固井施工要求,固井施工成功率高,能够提高低渗透储层的固井质量,能够有效进行层间封隔。
3)多尺度纤维韧性水泥浆体系不仅可以用于低渗透油气藏的固井施工,还可以满足储气库井、页岩气井等对水泥环韧性要求较高的井的固井要求。
-
表 1 A井模拟测调结果
Table 1 Simulation deployment results of Well A
防砂层段 层位 配水器编号 配水器测调情况 第6防砂段 L50—L70 配6 将流量由490 m3/d调小到260 m3/d,再调大到480 m3/d,证明配水器测调正常 第5防砂段 L74—L80 配5 将流量由256 m3/d调小到188 m3/d,再调大到260 m3/d,证明配水器测调正常 第4防砂段 L82 配4 将流量由140 m3/d调小到60 m3/d,再调大到145 m3/d,证明配水器测调正常 第3防砂段 L84—L92 配3 转动配水器,调节流量不变,且电流由90 mA增大到118 mA,说明该层在此压力条件下不吸水,建议进行酸化处理 第2防砂段 L94—L96 配2 将流量由79 m3/d调小到45 m3/d,再调大到65 m3/d,证明配水器测调正常 第1防砂段 L100 配1 将流量由44 m3/d调小到15 m3/d,再调大到45 m3/d,证明配水器测调正常 -
[1] 刘敏. “一投三分”分层配注及分层测试技术[J]. 中国海上油气(工程), 2000, 12(4): 38–39, 45. LIU Min. Water injection technique for three intervals in one step and separate measuring[J]. China Offshore Oil and Gas (Engineering), 2000, 12(4): 38–39, 45.
[2] 程心平,马成晔,张成富,等. 海上油田同心多管分注技术的开发与应用[J]. 中国海上油气, 2008, 20(6): 402–403, 415. doi: 10.3969/j.issn.1673-1506.2008.06.013 CHENG Xinping, MA Chengye, ZHANG Chengfu, et al. The development and application of concentric multi-barrel separated water injection technology for offshore oilfield[J]. China Offshore Oil and Gas, 2008, 20(6): 402–403, 415. doi: 10.3969/j.issn.1673-1506.2008.06.013
[3] 贾庆升. 液控式同心双管分层注水技术[J]. 石油机械, 2009, 37(5): 59–60, 64. JIA Qingsheng. Research on the technology of separate layer water injection by concentric double-tubing with hydraulic control packers[J]. China Petroleum Machinery, 2009, 37(5): 59–60, 64.
[4] 程智远,翁博,黄大云,等. 同心集成分注工艺技术研究与应用[J]. 西部探矿工程, 2006, 18(3): 78–79. doi: 10.3969/j.issn.1004-5716.2006.03.039 CHENG Zhiyuan, WENG Bo, HUANG Dayun, et al. Research and application of concentric integrated separation injection technology[J]. West-China Exploration Engineering, 2006, 18(3): 78–79. doi: 10.3969/j.issn.1004-5716.2006.03.039
[5] 程心平,王良杰,薛德栋. 渤海油田分层注水工艺技术现状与发展趋势[J]. 海洋石油, 2015, 35(2): 61–65, 81. doi: 10.3969/j.issn.1008-2336.2015.02.061 CHENG Xinping, WANG Liangjie, XUE Dedong. Current situation and development tendency of separated water injection technology in Bohai Offshore Oilfield[J]. Offshore Oil, 2015, 35(2): 61–65, 81. doi: 10.3969/j.issn.1008-2336.2015.02.061
[6] 赵振旺,王春耘,赵梅庆. 分层注水定量配水工艺技术研究与应用[J]. 石油钻采工艺, 2000, 22(4): 63–65. doi: 10.3969/j.issn.1000-7393.2000.04.018 ZHAO Zhenwang, WANG Chunyun, ZHAO Meiqing. Research and application of separate layer water injection and quantification injection allocation[J]. Oil Drilling & Production Technology, 2000, 22(4): 63–65. doi: 10.3969/j.issn.1000-7393.2000.04.018
[7] 丁晓芳,张一羽,刘海涛,等. 双管分层注水工艺技术的研究与应用[J]. 石油机械, 2009, 37(10): 50–51. DING Xiaofang, ZHANG Yiyu, LIU Haitao, et al. Research and application of the dual-string separate-layer water injection technology[J]. China Petroleum Machinery, 2009, 37(10): 50–51.
[8] 王立苹, 杨万有, 罗昌华, 等. 海上油田防砂完井注水井反洗工艺及配套工具[J]. 石油机械, 2013, 41(5): 36–39. doi: 10.3969/j.issn.1001-4578.2013.05.009 WANG Liping, YANG Wanyou, LUO Changhua, et al. Backwash technology and matching tool for sand control completion water injection well in offshore oilfield[J]. China Petroleum Machinery, 2013, 41(5): 36–39. doi: 10.3969/j.issn.1001-4578.2013.05.009
[9] 吉洋,刘敏,王立苹,等. 海上油田分层注水反洗井技术研究与应用[J]. 中国海上油气, 2015, 27(2): 87–92. JI Yang, LIU Min, WANG Liping, et al. Research and application of intergrated technology for zonal injection and backwashing in offshore oilfields[J]. China Offshore Oil and Gas, 2015, 27(2): 87–92.
[10] 李常友,刘明慧,贾兆军,等. 液控式分层注水工艺技术[J]. 石油机械, 2008, 36(9): 102–104. LI Changyou, LIU Minghui, JIA Zhaojun, et al. Technology of hydraulic control stratified waterflooding[J]. China Petroleum Machinery, 2008, 36(9): 102–104.
[11] 刘义刚,陈征,孟祥海,等. 渤海油田分层注水井电缆永置智能测调关键技术[J]. 石油钻探技术, 2019, 47(3): 133–139. doi: 10.11911/syztjs.2019044 LIU Yigang, CHEN Zheng, MENG Xianghai, et al. Cable implanted intelligent injection technology for separate injection wells in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(3): 133–139. doi: 10.11911/syztjs.2019044
[12] 范锡彦,于鑫,杨洪源,等. 分层注水井分层流量及验封测试技术[J]. 石油机械, 2007, 35(10): 64–65. doi: 10.3969/j.issn.1001-4578.2007.10.021 FAN Xiyan, YU Xin, YANG Hongyuan, et al. Layered flow rate and sealing testing technology in layered water injection wells[J]. China Petroleum Machinery, 2007, 35(10): 64–65. doi: 10.3969/j.issn.1001-4578.2007.10.021
[13] 李常友. 胜利油田测调一体化分层注水工艺技术新进展[J]. 石油机械, 2015, 43(6): 66–70. LI Changyou. New development of measurement and regulation integrated separate layer water injection technology in Shengli Oilfield[J]. China Petroleum Machinery, 2015, 43(6): 66–70.
[14] 董文军,胡长城,刘清松,等. 防聚合物返吐分层注水新技术[J]. 石油机械, 2004, 32(7): 49–50. doi: 10.3969/j.issn.1001-4578.2004.07.018 DONG Wenjun, HU Changcheng, LIU Qingsong, et al. New technology of layered water injection to prevent polymer return[J]. China Petroleum Machinery, 2004, 32(7): 49–50. doi: 10.3969/j.issn.1001-4578.2004.07.018
[15] 刘永胜. 注水井分层智能联动调配系统[J]. 石油仪器, 2007, 21(1): 62–63. LIU Yongsheng. Intelligent linkage adjusting system for separate injection well[J]. Petroleum Instruments, 2007, 21(1): 62–63.
[16] 刘红兰. 分层注水井测调一体化新技术[J]. 石油钻探技术, 2018, 46(1): 83–89. LIU Honglan. A new integrated measuring and adjusting technology of separate layer water injection well[J]. Petroleum Drilling Techniques, 2018, 46(1): 83–89.
-
期刊类型引用(7)
1. 朱道义,施辰扬,赵岩龙,陈神根,曾美婷. 二氧化碳驱化学封窜材料与方法研究进展及应用. 新疆石油天然气. 2023(01): 65-72 . 百度学术
2. 张龙胜,王维恒. 阴-非体系高温泡排剂HDHP的研究及应用——以四川盆地东胜页岩气井为例. 油气藏评价与开发. 2023(02): 240-246 . 百度学术
3. 姚光明,郭程飞,赵聪,高泽. 不同泡沫体系油藏适应性数值模拟. 断块油气田. 2023(05): 868-873 . 百度学术
4. 熊晓菲,盛家平. 吉木萨尔页岩油藏泡沫辅助注气吞吐试验研究. 石油钻探技术. 2022(02): 22-29 . 本站查看
5. 王维恒,陆俊华,韩倩. 二元复合型泡排剂COG的研制及现场试验. 石油钻探技术. 2022(03): 119-124 . 本站查看
6. 张跃. 缓膨颗粒性能及封堵裂缝储层二氧化碳气窜效果研究. 中外能源. 2022(07): 42-49 . 百度学术
7. 苑登御. N_2泡沫/CO_2复合吞吐提高采收率三维物理模拟试验研究. 石油钻探技术. 2022(06): 126-132 . 本站查看
其他类型引用(3)