The Design of Blade Type Diamond-Impregnated Bit and It’s Application in Well Hashan 101
-
摘要:
为提高准噶尔盆地哈山区块火山岩地层机械钻速、增大单只钻头进尺、降低井眼失稳掉块卡钻风险,设计了刀翼式孕镶金刚石钻头。在分析地层岩石的力学特性的基础上,研发了新型胎体合金材料,以提高钻头研磨性;镶嵌孕镶切削块,以增强钻头破岩能力;优化设计了刀翼式孕镶金刚石钻头的结构和防卡流道,防止钻头卡死。研究发现,超细合金材料相互联结成键、牢固烧结,钻头胎体力学性能提高30%以上。刀翼式孕镶金刚石钻头配合高速大扭矩螺杆钻具在哈山101井火山岩地层进行了应用,单只钻头进尺增大4倍,机械钻速提高54.3%。研究结果表明,刀翼式孕镶金刚石钻头可以降低掉块卡钻风险,可实现火山岩地层安全高效钻进。
Abstract:In order to improve the ROP in the volcanic rock formation of the Hashan Area in Junggar Basin, increase the footage of single drill bit, and reduce the risks of wellbore instability and caving, the bit design for rapid drilling was carried out. The mechanical performance of the formation rock was analyzed by a full-scale coring indoor test. On this basis, a new matrix alloy material was developed to improve the grinding performance of the bit. Then, the impregnated cutting block was used to enhance the rock breaking ability, and the blade-type impregnated bit structure and the anti-sticking flow path were optimized. The caving falling into the oblique chip flute could be pushed upward to prevent the bit from being stuck. It was found that the ultra-fine alloy materials could be bonded to each other to form a firm adhesion, and the mechanical performance of bit matrix improved by more than 30%. The blade-type impregnated drill bit was used in the volcanic rock formation of Well Hashan 101 associated with a high-speed and high-torque screw power drill, the single bit footage was increased by 4 times and the ROP was increased by 54.3%. This technology also effectively reduced the risk of caving and sticking, and became an effective technical measure for safe and efficient drilling in such formations.
-
-
表 1 哈山区块岩石力学试验结果
Table 1 Test results of the mechanical performance of coring rock in Hashan Block
样品编号 围压/
MPa温度/
℃饱和
状态抗压强度/
MPa杨氏模量/
GPahs101-3326-sp0 0 20 干燥 163.58 27.89 hs101-3326-sp45 0 20 干燥 158.44 26.98 hs101-3326-cz1 0 20 干燥 175.65 28.97 hs101-3937-cz1 0 20 干燥 288.79 59.72 hs101-3326-cz2 30 20 干燥 408.81 46.54 hs101-3326-cz3 60 20 干燥 530.60 55.48 表 2 哈山区块部分完钻井的钻井技术指标
Table 2 Drilling technical indicators of some drilled wells in the Hashan Block
井号 井深/m 火山岩厚度/m 钻井周期/d 机械钻速/(m·h–1) 钻头总量/只 牙轮钻头用量/只 哈山1井 2 554.00 2 008.00 105.4 1.86 29 20 哈山3井 4 139.80 3 532.80 412.3 1.24 62 52 哈深2井 5 238.26 5 148.30 823.8 0.73 162 142 表 3 刀翼式孕镶金刚石钻头应用技术数据
Table 3 Technical data of blade-type impregnated diamond bit
序号 钻进井段/
m进尺/
m钻速/
(m·h–1)排量/
(L·s–1)转盘转速/
(r·min–1)螺杆转速/
(r·min–1)泵压/
MPa钻压/
kN备注 1 3 539.50~3 592.00 52.50 0.54 30 30~50 500 22.0 60~70 螺杆到寿命后起钻 2 3 592.00~3 639.89 47.89 0.44 30 30~50 500 22.5 70~80 泵压升高后起钻 3 3 814.10~3 848.52 34.42 0.42 30 30~50 500 23.0 80~100 钻速变慢后起钻 -
[1] 张奎华,林会喜,张关龙,等. 哈山构造带火山岩储层发育特征及控制因素[J]. 中国石油大学学报(自然科学版), 2015, 39(2): 16–22. doi: 10.3969/j.issn.1673-5005.2015.02.003 ZHANG Kuihua, LIN Huixi, ZHANG Guanlong, et al. Characteristics and controlling factors of volcanic reservoirs of Hala’alate mountains tectonic belt[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(2): 16–22. doi: 10.3969/j.issn.1673-5005.2015.02.003
[2] 王贵新. 准噶尔盆地哈山山前构造带钻井分析[J]. 石化技术, 2017(3): 128. doi: 10.3969/j.issn.1006-0235.2017.03.105 WANG Guixin. Analysis of drilling in Hassan piedmont tectonic belt of Zhungeer Basin[J]. Petrochemical Industry Technology, 2017(3): 128. doi: 10.3969/j.issn.1006-0235.2017.03.105
[3] 张学光. 哈山3井石炭系钻井提速探索与实践[J]. 内蒙古石油化工, 2013, 39(20): 38–40. ZHANG Xueguang. The exploration and practice of carboniferous ROP enhancement in Hassan 3 Well[J]. Inner Mongolia Petrochemical Industry, 2013, 39(20): 38–40.
[4] 梁奇敏,何俊才,张弘,等. 钻井提速工具经济性预测评价方法[J]. 石油钻探技术, 2017, 45(3): 57–61. LIANG Qimin, HE Juncai, ZHANG Hong, et al. Assessment of the economic performance of ROP enhancement tools[J]. Petroleum Drilling Techniques, 2017, 45(3): 57–61.
[5] 王滨,李军,邹德永,等. 适合强研磨性硬地层PDC–金刚石孕镶块混合钻头设计与应用[J]. 特种油气藏, 2018, 25(1): 169–174. doi: 10.3969/j.issn.1006-6535.2018.01.035 WANG Bin, LI Jun, ZOU Deyong, et al. Design and application of a PDC hybrid drill bit with impregnated diamond insert for the hard formation with strong abrasivity[J]. Special Oil and Gas Reservoirs, 2018, 25(1): 169–174. doi: 10.3969/j.issn.1006-6535.2018.01.035
[6] 马凤清. 哈山3井火成岩地层快速钻井技术[J]. 石油钻探技术, 2014, 42(2): 112–116. MA Fengqing. Fast drilling technique through igneous rocks in Well Hashan 3[J]. Petroleum Drilling Techniques, 2014, 42(2): 112–116.
[7] 罗治奇. 火山岩地层钻进金刚石钻头寿命与效率的探讨[J]. 探矿工程(岩土钻掘工程), 2011, 38(2): 63–66. doi: 10.3969/j.issn.1672-7428.2011.02.019 LUO Zhiqi. Discussion on service life and efficiency of diamond bit drilling in volcanic strata[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2011, 38(2): 63–66. doi: 10.3969/j.issn.1672-7428.2011.02.019
[8] 蔡家品,贾美玲,史强. 元坝地区新型金刚石钻头的研究与应用[J]. 探矿工程(岩土钻掘工程), 2010, 37(11): 70–72. doi: 10.3969/j.issn.1672-7428.2010.11.021 CAI Jiapin, JIA Meiling, SHI Qiang. Research and application of new type of diamond bit in Yuanba Area[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2010, 37(11): 70–72. doi: 10.3969/j.issn.1672-7428.2010.11.021
[9] 赵尔信,蔡家品,贾美玲,等. 浅谈国内外金刚石钻头的发展趋势:高效、低耗[J]. 探矿工程(岩土钻掘工程), 2010, 37(10): 70–73, 81. doi: 10.3969/j.issn.1672-7428.2010.10.016 ZHAO Erxin, CAI Jiapin, JIA Meiling, et al. Discussion on development trend of diamond bit both in China and abroad[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2010, 37(10): 70–73, 81. doi: 10.3969/j.issn.1672-7428.2010.10.016
[10] 牛洪波,冯光通,赵洪山,等. 哈山101 井火成岩地层空气锤钻井技术[J]. 石油钻采工艺, 2018, 40(2): 164–168. NIU Hongbo, FENG Guangtong, ZHAO Hongshan, et al. Application of air hammer drilling technology in the igneous strata of Well Hashan 101[J]. Oil Drilling & Production Technology, 2018, 40(2): 164–168.
-
期刊类型引用(22)
1. 邓华根,韩成,王应好. 海上页岩油探井测试大规模压裂技术及实践. 化学工程与装备. 2025(02): 38-42 . 百度学术
2. 柳军,袁明健,杜智刚. 分簇射孔管串泵送排量模型及影响因素分析. 中国海上油气. 2025(02): 198-209 . 百度学术
3. 杜辉,范克明,吴晨宇,石胜男,王力,李庆松. 大庆泥页岩储层支撑剂嵌入导流能力实验研究. 石油工业技术监督. 2024(01): 1-6 . 百度学术
4. 李兴,廉冬. 页岩油伴生气二氧化碳浓度连续监测技术研究. 石油化工自动化. 2024(01): 77-79 . 百度学术
5. 武晓光,龙腾达,黄中伟,高文龙,李根生,谢紫霄,杨芮,鲁京松,马金亮. 页岩油多岩性交互储层径向井穿层压裂裂缝扩展特征. 石油学报. 2024(03): 559-573+585 . 百度学术
6. 王成龙,韩成,徐靖,郭宇堃,陈力. 海上大规模压裂地面流程设计及研究. 中国高新科技. 2024(06): 81-83 . 百度学术
7. 刘正伟,余常燕,余琦昌,梁云,王勇. 页岩油藏提高采收率技术现状、瓶颈及对策. 化学工程师. 2024(06): 64-68 . 百度学术
8. Li Wang,Chen-Hao Gao,Rui-Ying Xiong,Xiao-Jun Zhang,Ji-Xiang Guo. Development review and the prospect of oil shale in-situ catalysis conversion technology. Petroleum Science. 2024(02): 1385-1395 . 必应学术
9. 张茜,苏玉亮,王文东,文嘉熠. 基于多段压裂缝-井筒耦合流动模型的页岩油水平井段长度优化研究. 油气地质与采收率. 2024(03): 112-122 . 百度学术
10. 郭旭升,魏志红,魏祥峰,刘珠江,陈超,王道军. 四川盆地侏罗系陆相页岩油气富集条件及勘探方向. 石油学报. 2023(01): 14-27 . 百度学术
11. 廖璐璐,李根生,宋先知,冯连勇,高启超,程世忠. 我国脱碳路径与油公司能源转型策略研究. 石油钻探技术. 2023(01): 115-122 . 本站查看
12. 杨晋玉,陈晓平,李超,郑奎,张宝娟,陈春恒. 基于经济效益评价的页岩油水平井加密调整参数优化——以鄂尔多斯盆地XAB油田长7页岩油藏为例. 中国石油勘探. 2023(04): 129-138 . 百度学术
13. 张锦宏,周爱照,成海,毕研涛. 中国石化石油工程技术新进展与展望. 石油钻探技术. 2023(04): 149-158 . 本站查看
14. 孔祥伟,卾玄吉,齐天俊,陈青,任勇,王素兵,李亭,刘宇. 页岩气井复合暂堵泵压数学模型及影响因素. 特种油气藏. 2023(04): 156-162 . 百度学术
15. 范明福,明鑫,明柱平,邱伟. 基质型页岩油储层高导流体积缝网压裂技术. 断块油气田. 2023(05): 721-727 . 百度学术
16. 吴刚,刘其伦,钟小军,王孝超,冯汉斌,赵政嘉. 束鹿页岩油密切割压裂技术——以SY302X井为例. 油气井测试. 2023(05): 36-43 . 百度学术
17. 王平,沈海超. 加拿大M致密砂岩气藏高效开发技术. 石油钻探技术. 2022(01): 97-102 . 本站查看
18. 夏娜. 页岩油储层压裂改造. 化学工程与装备. 2022(03): 47-48 . 百度学术
19. 李凤霞,王海波,周彤,韩玲. 页岩油储层裂缝对CO_2吞吐效果的影响及孔隙动用特征. 石油钻探技术. 2022(02): 38-44 . 本站查看
20. 张矿生,唐梅荣,陶亮,杜现飞. 庆城油田页岩油水平井压增渗一体化体积压裂技术. 石油钻探技术. 2022(02): 9-15 . 本站查看
21. 刘红磊,徐胜强,朱碧蔚,周林波,黄亚杰,李保林. 盐间页岩油体积压裂技术研究与实践. 特种油气藏. 2022(02): 149-156 . 百度学术
22. 黄越,金智荣. 花庄区块页岩油密切割体积压裂对策研究. 石油地质与工程. 2022(05): 96-100 . 百度学术
其他类型引用(10)