Yu Huajie, Wang Xing, Tan Xianhong, Tian Bo. Test and Analysis on Phase Features of High-CO2 Condensate Gas[J]. Petroleum Drilling Techniques, 2013, 41(2): 104-108. DOI: 10.3969/j.issn.1001-0890.2013.02.020
Citation: Yu Huajie, Wang Xing, Tan Xianhong, Tian Bo. Test and Analysis on Phase Features of High-CO2 Condensate Gas[J]. Petroleum Drilling Techniques, 2013, 41(2): 104-108. DOI: 10.3969/j.issn.1001-0890.2013.02.020

Test and Analysis on Phase Features of High-CO2 Condensate Gas

More Information
  • Received Date: June 17, 2012
  • Revised Date: December 25, 2012
  • To determine a suitable development mode and enhance condensate oil recovery in high-CO2 condensate gas reservoir,the phase changing behavior of condensate gas flow in the development process was identified.The HTHP Multi-functional Fluid Analyzer was used in single flash vaporization test,dew point pressure test,constant component expansion test,and constant volume depletion test for high-CO2 condensate gas samples with different mole fractions,and the impacts of such fractions on the phase behavior and HP physical parameters were also compared.With higher mole fraction of CO2,the rate of retrograde condensation dropped,the peak of retrograde condensation liquid decreased by about 15%,the recovery factor of condensate oil increased by about 20%,the recovery of natural gas was about 85%,and the phase envelope curve shrank inwards.CO2 in the system contributes to higher condensate recovery by inhibiting its retrograde condensation and enhancing the retrograde vaporization.It is significant for determining a reasonable production strategy.
  • [1]
    穆国臣,陈晓峰,王雪.松南地区深井钻井提速难点与对策[J].石油钻探技术,2011,39(6):19-22. Mu Guochen,Chen Xiaofeng,Wang Xue.Difficulties and applied technical strategy in deep well drilling in Songnan Area[J].Petroleum Drilling Techniques,2011,39(6):19-22.
    [2]
    陈安明,张进双,白彬珍,等.松辽盆地深井钻井技术难点与对策[J].石油钻探技术,2011,39(6):119-122. Chen Anming,Zhang Jinshuang,Bai Binzhen,et al.The drilling problem and countermeasures of deep wells in Songliao Basin[J].Petroleum Drilling Techniques,2011,39(4):119-122.
    [3]
    鲁雪松,王兆宏,魏立春,等.松辽盆地二氧化碳成因判别与分布规律[J].石油与天然气地质,2009,30(1):97-101. Lu Xuesong,Wang Zhaohong,Wei Lichun,et al.Origin and distribution patterns of carbon dioxide in the Songliao Basin[J].Oil Gas Geology,2009,30(1):97-101.
    [4]
    米敬奎,张水昌,王晓梅,等.松辽盆地高含CO2气藏储层包裹体气体的地球化学特征[J].石油与天然气地质,2009,30(1):68-73. Mi Jingkui,Zhang Shuichang,Wang Xiaomei,et al.Geochemical behaviors of gases from inclusions in high CO2 reservoir in the Songliao Basin[J].Oil Gas Geology,2009,30(1):68-73.
    [5]
    王洪江,吴聿元.松辽盆地长岭断陷火山岩天然气藏分布规律与控制因素[J].石油与天然气地质,2011,32(3):360-367. Wang Hongjiang,Wu Yuyuan.Distribution patterns and controlling factors of volcanic gas pools in the Changling fault depression in the Songliao Basin[J].Oil Gas Geology,2011,32(3):360-367.
    [6]
    田信义,王国苑,陆笑心,等.气藏分类[J].石油与天然气地质,1996,17(3):206-212. Tian Xinyi,Wang Guoyuan,Lu Xiaoxin,et al.The classification of gas pools[J].Oil Gas Geology,1996,17(3):206-212.
    [7]
    刘琦,孙雷,刘登峰.凝析油气体系相态特征研究现状[J].钻采工艺,2008,31(1):112-113. Liu Qi,Sun Lei,Liu Dengfeng.Phase feature study of the condensate gas reservoir[J].Drilling Production Technology,2008,31(1):112-113.
    [8]
    谢志,邓红英,雷炜.带油环凝析气藏相态特征研究[J].钻采工艺,2009,32(2):101-103. Xie Zhi,Deng Hongying,Lei Wei.Phase feature study of the condensate gas reservoir with oil rim[J].Drilling Production Technology,2009,32(2):101-103.
    [9]
    位云生,胡永全,张啸枫,等.CO2或N2压裂凝析气藏后近缝带烃类的相态分析[J].石油钻探技术,2008,36(3):84-86. Wei Yunsheng,Hu Yongquan,Zhang Xiaofeng,et al.Hydrocarbon phase behavior analysis around fracture after CO2 or N2 fracturing condensate gas reservoir[J].Petroleum Drilling Techniques,2008,36(3):84-86.
    [10]
    苏云河,汤勇,肖云,等.CO2含量对火山岩气藏开发指标的影响[J].天然气工业,2011,31(8):69-72. Su Yunhe,Tang Yong,Xiao Yun,et al.Impacts of CO2 content on the development indexes of volcanic gas reservoirs[J].Natural Gas Industry,2011,31(8):69-72.
    [11]
    任双双,杨胜来,朱海鹏,等.混CO2气井相态特征[J].西南石油大学学报:自然科学版,2009,31(5):101-103. Ren Shuangshuang,Yang Shenglai,Zhu Haipeng,et al.Phase behavior characteristics of gas well with rich content CO2[J].Journal of Southwest Petroleum University:Science Technology Edition,2009,31(5):101-103.
    [12]
    王刚,杨胜来,吴晓云,等.富含CO2天然气偏差因子研究[J].石油钻采工艺,2010,32(1):53-56. Wang Gang,Yang Shenglai,Wu Xiaoyun,et al.Study on deviation factor of CO2 rich gas[J].Oil Drilling Production Technology,2010,32(1):53-56.
    [13]
    张庆洲,樊建明,郭平,等.非烃对气藏流体偏差系数的影响[J].天然气工业,2009,29(10):74-76. Zhang Qingzhou,Fan Jianming,Guo Ping,et al.Impact of non-hydrocarbons on the calculation of compressibility factor for inorganic gas reservoir fluids[J].Natural Gas Industry,2009,29(10):74-76.
    [14]
    范照伟,杨胜来,王玉霞,等.火山岩高含CO2气藏渗透率应力敏感性研究[J].断块油气田,2010,17(1):57-59. Fan Zhaowei,Yang Shenglai,Wang Yuxia,et al.Permeability stress sensitivity of volcanic gas reservoir with high CO2 content[J].Fault-Block Oil Gas Field,2010,17(1):57-59.
    [15]
    田昌炳,罗凯,胡永乐,等.凝析气露点压力的确定及影响因素[J].石油学报,2003,24(6):73-76. Tian Changbing,Luo Kai,Hu Yongle,et al.Determination method and affecting factors for dew point pressure of condensate gas[J].Acta Petrolei Sinica,2003,24(6):73-76.
  • Related Articles

    [1]LI Ran, LI Wenzhe, ZHANG Jiayin, LIU Yang. Drilling Fluid Technology for Ultra-Large Wellbore in the Upper Part of 10 000-Meter Deep Well SDCK1[J]. Petroleum Drilling Techniques, 2024, 52(2): 93-99. DOI: 10.11911/syztjs.2024040
    [2]ZHANG Hongfeng. Hydraulic Shaping Technology of Deformed Casing after Fracturing in Horizontal Shale Oil Wells[J]. Petroleum Drilling Techniques, 2023, 51(5): 173-178. DOI: 10.11911/syztjs.2023055
    [3]WEI Zanqing, TIAN Zhibin, YANG Gengjia, PENG Jiale. Design and Application of a Hydraulic Rotary Sidewall Coring Tool at High Temperatures[J]. Petroleum Drilling Techniques, 2023, 51(3): 73-82. DOI: 10.11911/syztjs.2023042
    [4]YU Guimin, XU Liangbin, XIE Renjun, SHENG Leixiang, HE Dongsheng. Transmission Characteristics of Downhole Hydraulic Control Signalsin Intelligent Wells[J]. Petroleum Drilling Techniques, 2022, 50(6): 98-106. DOI: 10.11911/syztjs.2022099
    [5]ZHAO Guangyuan, WANG Tianhui, YANG Shukun, LI Xiang, LV Guosheng, DU Xiaoxia. Key Optimization Technologies of Intelligent Layered Water Injection with Hydraulic Control in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(1): 76-81. DOI: 10.11911/syztjs.2021125
    [6]ZHANG Hongbao. The Development and Application of a High Efficiency Hydraulic Casing Restoration Tool[J]. Petroleum Drilling Techniques, 2016, 44(3): 101-104. DOI: 10.11911/syztjs.201603018
    [7]Zhang Guilin. Handle Position of the Three-Position Four-Way Directional Control Valve on the Remote Control Console of BOP[J]. Petroleum Drilling Techniques, 2014, 42(6): 8-12. DOI: 10.11911/syztjs.201406002
    [8]Ma Mingxin, Yang Haibo, Xu Xin. Application of Hydraulic Centralizer in Unconventional Oil Well Cementing of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(1): 71-74. DOI: 10.3969/j.issn.1001-0890.2014.01.014
    [9]Jin Yequan, Sun Zeqiu, Liu Gang. Simulation Analysis and Experimental Study of Managed Pressure Drilling Hydraulic Throttle Pressure Control System[J]. Petroleum Drilling Techniques, 2013, 41(2): 109-113. DOI: 10.3969/j.issn.1001-0890.2013.02.021
    [10]Lan Zhigang. Failure Mechanism of Two-Way Hydraulic Shock Absorbers and Improvement Measures[J]. Petroleum Drilling Techniques, 2012, 40(2): 104-108. DOI: 10.3969/j.issn.1001-0890.2012.02.020
  • Cited by

    Periodical cited type(6)

    1. 叶秀茹,汪万飞,付红. 原位二氧化碳泡沫驱提高采收率实验. 油田化学. 2024(01): 108-115+178 .
    2. 张志军,王晓超,魏俊,石端胜,陈增辉,华科良. 基于注采参数的地下生泡调剖效果影响因素分析. 非常规油气. 2024(06): 58-66 .
    3. 曹小朋,熊英,冯其红,赵乐坤,张世明,刘同敬,王森,杨雨萱. 低渗透-致密油藏CO_2驱油与封存协同评价方法. 油气地质与采收率. 2023(02): 44-52 .
    4. 郑玉飞,李翔,刘文辉,冯轩,宫汝祥,王硕. 海上砂岩油藏注自生CO_2体系实验及提高采收率机理. 大庆石油地质与开发. 2023(04): 113-121 .
    5. 王晓超,魏俊,张海波,张志军,罗珊,王艳霞. 海上中深层油藏层内生气调剖效果评价及分析. 复杂油气藏. 2023(04): 449-454 .
    6. 苑登御. N_2泡沫/CO_2复合吞吐提高采收率三维物理模拟试验研究. 石油钻探技术. 2022(06): 126-132 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return