WEI Zanqing, TIAN Zhibin, YANG Gengjia, et al. Design and application of a hydraulic rotary sidewall coring tool at high temperatures [J]. Petroleum Drilling Techniques,2023, 51(3):73-82. DOI: 10.11911/syztjs.2023042
Citation: WEI Zanqing, TIAN Zhibin, YANG Gengjia, et al. Design and application of a hydraulic rotary sidewall coring tool at high temperatures [J]. Petroleum Drilling Techniques,2023, 51(3):73-82. DOI: 10.11911/syztjs.2023042

Design and Application of a Hydraulic Rotary Sidewall Coring Tool at High Temperatures

More Information
  • Received Date: May 09, 2022
  • Revised Date: March 14, 2023
  • Available Online: March 29, 2023
  • Since it is difficult to obtain stratigraphic cores in deep exploration wells, a hydraulic rotary sidewall coring tool with a maximum operating temperature of 205 °C and high reliability was developed. The coring tool is composed of a ground system, a control acquisition short section, and a mechanical hydraulic section, and adopts an integrated thermos bottle technology, passive thermal management technology, and stuck-freeing technology, which effectively improve its temperature resistance and engineering safety. The performance of these key technical functions was verified through simulation and ground tests. The actual operation results show that the tool can operate normally in exploratory wells with a high temperature of 189 °C and high pressure, high relative density of drilling fluid, and large formation pressure difference, and further, the average core recovery rate exceeds 90%. In addition, it has the characteristics of high temperature resistance, stick and jam prevention, and high coring efficiency and core recovery rate and shows excellent adaptability and high safety and reliability in solving problems in complex well sections, such as hole enlargement, hole contraction, and borehole collapse.

  • [1]
    信召玲,苏鹤成,张国强,等. 旋转井壁取心作业难点及解决方案[J]. 中国石油和化工标准与质量,2019,39(21):111–112.

    XIN Zhaoling, SU Hecheng, ZHANG Guoqiang, et al. Difficulties and solutions of rotary sidewall coring operation[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(21): 111–112.
    [2]
    王莹,杨帆,陆敬武,等. 直驱式旋转井壁取心仪器电路设计[J]. 石油管材与仪器,2017,3(5):9–11.

    WANG Ying, YANG Fan, LU Jingwu, et al. Circuit design for direct-drive extended rotary sidewall coring tools[J]. Petroleum Tubular Goods & Instruments, 2017, 3(5): 9–11.
    [3]
    王晋. 旋转式井壁取心地面系统设计与实现[D]. 长春: 吉林大学, 2019.

    WANG Jin. Design and implementation of surface system for rotary sidewall coring[D]. Changchun: Jilin University, 2019.
    [4]
    郝桂青,庞希顺,欧阳剑. 增强型旋转式井壁取芯器技术及应用[J]. 石油仪器,2011,25(5):22–24.

    HAO Guiqing, PANG Xishun, OUYANG Jian. Enhanced rotary sidewall core technology and its application[J]. Petroleum Instruments, 2011, 25(5): 22–24.
    [5]
    苏鹤成,苑仁国. 有效提高旋转井壁取心收获率的工艺探讨[J]. 化工管理,2014(33):187.

    SU Hecheng, YUAN Renguo. Discussion on the technology of effectively improving the rotary sidewall coring tool[J]. Chemical Enterprise Management, 2014(33): 187.
    [6]
    杨兴琴,余迎. 国外3种大直径旋转井壁取心器性能对比[J]. 测井技术,2012,36(6):610.

    YANG Xingqin, YU Ying. Performance comparison of three foreign large diameter rotary sidewall coring tools[J]. Well Logging Technology, 2012, 36(6): 610.
    [7]
    牛延吉,刘先平,嵇成高,等. 大直径旋转井壁取心仪研制与应用[J]. 测井技术,2018,42(2):235–237.

    NIU Yanji, LIU Xianping, JI Chenggao, et al. Development and application of the large diameter rotary sidewall coring tool[J]. Well Logging Technology, 2018, 42(2): 235–237.
    [8]
    陆敬武,曹扬,杨帆,等. 新型旋转井壁取心仪在大庆油田的应用[J]. 测井技术,2016,40(6):761–764.

    LU Jingwu, CAO Yang, YANG Fan, et al. Application of enhanced rotary sidewall coring logging tool in Daqing Oilfield[J]. Well Logging Technology, 2016, 40(6): 761–764.
    [9]
    邓强,谭忠健,尚锁贵,等. 新型旋转井壁取心工具在渤海油田的应用[J]. 石油天然气学报,2012,34(1):157–160.

    DENG Qiang, TAN Zhongjian, SHANG Suogui, et al. The application of a new rotary wall coring tool in Bohai Oilfield[J]. Journal of Oil and Gas Technology, 2012, 34(1): 157–160.
    [10]
    常毓强. 大直径旋转井壁取心测井技术及临兴气田应用[J]. 当代化工研究,2022(8):115–117.

    CHANG Yuqiang. Large-diameter rotating borehole core logging technology and its application in Linxing Gas Field[J]. Modern Chemical Research, 2022(8): 115–117.
    [11]
    刘辉,马辉运,曾立新,等. 高温高压井下工具试验系统的研制与应用[J]. 石油机械,2019,47(12):100–105.

    LIU Hui, MA Huiyun, ZENG Lixin, et al. High temperature and high pressure downhole tool test system[J]. China Petroleum Machinery, 2019, 47(12): 100–105.
    [12]
    罗鸣,冯永存,桂云,等. 高温高压钻井关键技术发展现状及展望[J]. 石油科学通报,2021,6(2):228–244. doi: 10.3969/j.issn.2096-1693.2021.02.018

    LUO Ming, FENG Yongcun, GUI Yun, et al. Development status and prospect of key technologies for high temperature and high pressure drilling[J]. Petroleum Science Bulletin, 2021, 6(2): 228–244. doi: 10.3969/j.issn.2096-1693.2021.02.018
    [13]
    王喜辉,张忠强. 超高温高压井取心技术在LD13井的应用[J]. 海洋石油,2022,42(4):91–94.

    WANG Xihui, ZHANG Zhongqiang. Application of coring technology in ultra high temperature and high pressure well in Well LD13[J]. Offshore Oil, 2022, 42(4): 91–94.
    [14]
    王健. FCT-2旋转式井壁取心收获率影响因素浅析[J]. 石油管材与仪器,2020,6(1):94–97.

    WANG Jian. Influencing factors analysis on FCT-2 rotary sidewall coring recovery rate[J]. Petroleum Tubular Goods & Instruments, 2020, 6(1): 94–97.
    [15]
    刘铁民,冯永仁,田志宾. 一种新型的岩心检测原理分析研究及应用[J]. 石油化工应用,2021,40(6):67–71.

    LIU Tiemin, FENG Yongren, TIAN Zhibin. Analysis and application of a new core detection principle[J]. Petrochemical Industry Application, 2021, 40(6): 67–71.
    [16]
    魏赞庆,彭嘉乐,田志宾,等. 旋转井壁取心仪热管理系统设计及应用[J]. 测井技术,2022,46(3):251–256.

    WEI Zanqing, PENG Jiale, TIAN Zhibin, et al. Design and application of thermal management system for rotary sidewall coring tool[J]. Well Logging Technology, 2022, 46(3): 251–256.
    [17]
    魏赞庆,彭嘉乐,蓝威,等. 高温井下低熔点合金储热模块封装及试验[J]. 石油机械,2022,50(11):9–15.

    WEI Zanqing, PENG Jiale, LAN Wei, et al. Package and test of low-melting alloy heat storage module in high-temperature wellbore[J]. China Petroleum Machinery, 2022, 50(11): 9–15.
    [18]
    PENG Jiale, WANG Yujun, DING Siqi, et al. Rapid detection of the vacuum failure of logging tools based on the variation in equivalent thermal conductivity[J]. International Journal of Thermal Sciences, 2023, 188: 108245. doi: 10.1016/j.ijthermalsci.2023.108245
    [19]
    DI Xiaobo, GAO Yimin, BAO Chonggao, et al. Thermal insulation property and service life of vacuum insulation panels with glass fiber chopped strand as core materials[J]. Energy and Buildings, 2014, 73: 176–183. doi: 10.1016/j.enbuild.2014.01.010
    [20]
    BAETENS R, JELLE B P, THUE J V, et al. Vacuum insulation panels for building applications: A review and beyond[J]. Energy and Buildings, 2010, 42(2): 147–172. doi: 10.1016/j.enbuild.2009.09.005
    [21]
    BOUQUEREL M, DUFORESTEL T, BAILLIS D, et al. Heat transfer modeling in vacuum insulation panels containing nanoporous silicas: A review[J]. Energy and Buildings, 2012, 54: 320–336. doi: 10.1016/j.enbuild.2012.07.034
    [22]
    PENG Jiale, LAN Wei, WEI Fulong, et al. A numerical model coupling multiple heat transfer modes to develop a passive thermal management system for logging tool[J]. Applied Thermal Engineering, 2023, 223: 120011. doi: 10.1016/j.applthermaleng.2023.120011
    [23]
    LAN Wei, ZHANG Jiawei, PENG Jiale, et al. Distributed thermal management system for downhole electronics at high tempera-ture[J]. Applied Thermal Engineering, 2020, 180: 115853. doi: 10.1016/j.applthermaleng.2020.115853
    [24]
    王新杰. 旋转式井壁取芯器的设计与机构运动仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.

    WANG Xinjie. Study on the design and kinematic simulation of the rotary sidewall coring tool[D]. Harbin: Harbin Institute of Technology, 2006.
  • Related Articles

    [1]YAO Jun, WANG Chunqi, HUANG Zhaoqin, YANG Yongfei, SUN Hai, ZHANG Lei. Digital Core Construction Methods for High Stress in Deep and Ultra-Deep Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(2): 38-47. DOI: 10.11911/syztjs.2024039
    [2]WANG Xigui, ZOU Deyong, YANG Liwen, GAO Wei, SUN Shaoliang, SU Yang. Development and Field Application of a Coalbed Methane Coring Tool with Pressure Maintenance, Thermal Insulation, and Shape Preservation Capabilities[J]. Petroleum Drilling Techniques, 2021, 49(3): 94-99. DOI: 10.11911/syztjs.2021061
    [3]CAO Huaqing, LONG Zhiping. Key Coring Technologies for the Dainan Formation and Funing Formation in North Jiangsu Basin[J]. Petroleum Drilling Techniques, 2019, 47(2): 28-33. DOI: 10.11911/syztjs.2019019
    [4]LIU Zixiong, WANG Xingzun, LI Jingsong, HUANG Zijun, WU Ying. New Technique in the Identification of Water-Gas Interface in Low Permeability Gas Reservoirs from Core Data[J]. Petroleum Drilling Techniques, 2016, 44(6): 88-92. DOI: 10.11911/syztjs.201606015
    [5]Li Rongqiang, Gao Ying, Yang Yongfei, Li Yang, Yao Jun. Experimental Study on the Pressure Sensitive Effects of Cores Based on CT Scanning[J]. Petroleum Drilling Techniques, 2015, 43(5): 37-43. DOI: 10.11911/syztjs.201505007
    [6]Wu Wei, Ling Wenxue, Si Yinghui. Coring Challenges and Solutions in the YD Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(3): 18-22. DOI: 10.11911/syztjs.201503004
    [7]Xu Junliang, Song Weihua, Ren Hong. Research and Field Application of Key Coring Technology for Unconsolidated Formation in Matured Oilfield[J]. Petroleum Drilling Techniques, 2012, 40(5): 26-29. DOI: 10.3969/j.issn.1001-0890.2012.05.006
    [8]Chen Mian, Jin Yan. Shale Gas Fracturing Technology Parameters Optimization Based on Core Analysis[J]. Petroleum Drilling Techniques, 2012, 40(4): 7-12. DOI: 10.3969/j.issn.1001-0890.2012.04.002
    [9]Research on Wellbore Gravity Heat Pipe Heating Technology in Thermal Recovery of Heavy Oil[J]. Petroleum Drilling Techniques, 2011, 39(2): 108-111. DOI: 10.3969/j.issn.1001-0890.2011.02.022
  • Cited by

    Periodical cited type(4)

    1. 田志宾,张嗣祺,杨庚佳,罗小兵. 超高温井下热管理系统优化设计与实验研究. 华中科技大学学报(自然科学版). 2025(04): 150-156 .
    2. 田志宾,彭嘉乐,鄢星宇,魏赞庆,杨庚佳,罗小兵. 测井仪被动式热管理系统室温冷却研究. 石油钻探技术. 2024(01): 146-154 . 本站查看
    3. 顾玉洋,夏竹君,罗鹏,王勇,李世举. MRCT-HT旋转井壁取心技术在南海东部A井中的应用. 石油和化工设备. 2024(04): 110-112+103 .
    4. 张波涛,罗鸣,张万栋,刘峰,孙艳军. 海上超高温高压井取心工具关键性能评价及应用研究. 中国科技论文. 2024(07): 760-768 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (229) PDF downloads (70) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return