Yu Yongjin, Jin Jianzhou, Liu Shuoqiong, Yuan Jinping, Xu Ming. Research and Application of Thermostable Cement Slurry[J]. Petroleum Drilling Techniques, 2012, 40(5): 35-39. DOI: 10.3969/j.issn.1001-0890.2012.05.008
Citation: Yu Yongjin, Jin Jianzhou, Liu Shuoqiong, Yuan Jinping, Xu Ming. Research and Application of Thermostable Cement Slurry[J]. Petroleum Drilling Techniques, 2012, 40(5): 35-39. DOI: 10.3969/j.issn.1001-0890.2012.05.008

Research and Application of Thermostable Cement Slurry

More Information
  • Received Date: February 18, 2012
  • Revised Date: August 02, 2012
  • In order to solve the problem of performance deterioration of cement slurry at high temperature,a thermo-stable cement slurry system was developed with DRF-120L as the main additive in the cement slurry based on the thermostable fluid loss additive DRF-120L,by means of optimizing other compatible additives.Evaluations on performance of the cement slurry were carried out based on laboratory analysis.The results showed that the cement slurry could be used at the temperature up to 200℃;it has good salt tolerance property,and even used in saturated brine,it could meet the high-temperature cementing requirements in deep wells;its fluid loss could be controlled under 100 mL,thickening time could be easily adjusted,compressive strength of set cement was high.Pilot tests of this cementing system were conducted in seven wells in Tarimu,Liaohe and Huabei Oilfields,cementing quality of these wells was qualified.This indicated that comprehensive performance of this kind of thermostable cement slurry system could meet the technical requirements for high temperature and deep well cementing,the problem of performance deterioration of cement slurry at high temperature had been solved.
  • [1]
    郭进忠,孙富全,侯薇.高温固井水泥浆体系的研究[J].石油化工应用,2008,27(5):10-14. Guo Jinzhong,Sun Fuquan,Hou Wei.The studies on high temperature tolerance slurry[J].Petrochemical Industry Application,2008,27(5):10-14.
    [2]
    李真祥,王瑞和,高航献.元坝地区超深探井复杂地层固井难点及对策[J].石油钻探技术,2010,38(1):20-25. Li Zhengxiang,Wang Ruihe,Gao Hangxian.Technical challenges arising from cementing ultra deep well in Yuba Area[J].Petroleum Drilling Techniques,2010,38(1):20-25.
    [3]
    牟月倩.高温高压固井技术研究[J].西部探矿工程,2006,18(4):104-106. Mou Yueqian.Study of HTHP cementing technology[J].West-China Exploration Engineering,2006,18(4):104-105.
    [4]
    谭春勤,徐江,孙文俊,等.深井油井水泥耐盐抗温降失水剂JSS300的试验研究[J].石油钻探技术,2009,37(4):50-53. Tan Chunqin,Xu Jiang,Sun Wenjun,et al.JSS300:a high temperature and salt resistant fluid loss agent for deep well cement slurry[J].Petroleum Drilling Techniques,2009,37(4):56-53.
    [5]
    刘崇建,黄柏宗,徐同台,等.油气井注水泥理论与应用[M].北京:石油工业出版社,2001:90-106. Liu Chongjian,Huang Bozong,Xu Tongtai.Cementing theory and application of oil gas wells[M].Beijing:Petroleum Industry Press,2001:90-106.
    [6]
    于永金,刘硕琼,刘丽雯,等.高温水泥浆降失水剂DRF-120L的制备及评价[J].石油钻采工艺,2011,33(3):24-27. Yu Yongjin,Liu Shuoqiong,Liu Liwen.Preparation and evaluation of thermostable cement slurry fluid loss additive DRF-120L[J].Oil Drilling Production Technology,2011,33(3):22-24.
    [7]
    API RP 1013-1997 Recommended practice for tesing well cement[S].
    [8]
    杨建波,邓建民,黎泽寒,等.低速注水泥过程中密度差对顶替效率的影响[J].石油钻探技术,2007,35(5):79-82. Yang Jianbo,Deng Jianmin,Li Zehan,et al.Effect of density difference on displacement efficiency during low-rate cementing[J].Petroleum Drilling Technques,2007,35(5):79-82.
    [9]
    杨建波,邓建民,冯予淇,等.低速注水泥时密度差对顶替效率影响规律的数值模拟研究[J].石油钻探技术,2008,36(5):62-65. Yang Jianbo,Deng Jianmin,Feng Yuqi,et al,Numerical simulation of effect of density difference on displacement efficiency at low cement slurry velocity[J].Petroleum Drilling Techniques,2008,36(5):62-65.
  • Related Articles

    [1]WU Bozhi, ZHANG Huaibing. Cementing Technology of a Self-Healing Cement Slurry in the Carbonate Formations in the Well Manshen 1[J]. Petroleum Drilling Techniques, 2021, 49(1): 67-73. DOI: 10.11911/syztjs.2020071
    [2]ZOU Shuang, FENG Minghui, ZHANG Tianyi, ZOU Jianlong, ZENG Jianguo, ZHAO Baohui. Research and Application of Tough Cement Slurry Systems with Multi-Scale Fiber[J]. Petroleum Drilling Techniques, 2020, 48(6): 40-46. DOI: 10.11911/syztjs.2020084
    [3]XIONG Min. Origin Analysis and Elimination of the S-Shaped Strength Development Curve of Cement Slurry[J]. Petroleum Drilling Techniques, 2018, 46(3): 39-43. DOI: 10.11911/syztjs.2018064
    [4]LIU Wei, ZENG Min, MA Kaihua, TAO Qian. The Study and Property Evaluation of a Lipophilic Cement Slurry With LQ Emulsion[J]. Petroleum Drilling Techniques, 2017, 45(1): 39-44. DOI: 10.11911/syztjs.201701007
    [5]FENG Wangsheng, SONG Weibin, ZHENG Huikai, LI Zongyao, XIE Chengbin. The Influence Law of Shear Rate on the Thickening Time of Cement Slurry[J]. Petroleum Drilling Techniques, 2016, 44(6): 74-77. DOI: 10.11911/syztjs.201606012
    [6]Zhu Bing, Nie Yuzhi, Qiu Zailei, Wang Haoren, Chen Hongzhuang, Ma Peng. Research on Fluid Loss Additives of AMPS/DMAM/AA in Well Cementing[J]. Petroleum Drilling Techniques, 2014, 42(6): 40-44. DOI: 10.11911/syztjs.201406008
    [7]Wang Xiaojing, Kong Xiangming, Zeng Min, Xu Chunhu, Zhao Zhiheng. Laboratory Research on a New Styrene Acrylic Latex Cement Slurry System[J]. Petroleum Drilling Techniques, 2014, 42(2): 80-84. DOI: 10.3969/j.issn.1001-0890.2014.02.016
    [8]Yao Yong, Yin Zongguo, Jiao Jianfang, Guo Guangping, Hong Shaoqing. Cementing with Ultra-High Density Slurry in Well Guanshen-1[J]. Petroleum Drilling Techniques, 2013, 41(1): 118-122. DOI: 10.3969/j.issn.1001-0890.2013.01.023
    [9]Liu Xuepeng, Zhang Mingchang, Ding Shidong, Liu Wei, Wang Xiaojing. Synthesis and Properties of a High-Temperature Grafting Polyvinyl Alcohol Fluid Loss Additive[J]. Petroleum Drilling Techniques, 2012, 40(3): 58-61. DOI: 10.3969/j.issn.1001-0890.2012.03.012
    [10]Li Zaoyuan, Zhou Chao, Liu Wei, Wang Yan, Guo Xiaoyang. Laboratory Study on the Cement Slurry System with Short Waiting on Cement Time at Low Temperature[J]. Petroleum Drilling Techniques, 2012, 40(2): 46-50. DOI: 10.3969/j.issn.1001-0890.2012.02.009
  • Cited by

    Periodical cited type(44)

    1. 方健. 油田注水系统智能化关键技术研究进展. 化工自动化及仪表. 2025(01): 1-9 .
    2. 杜东哲,李兴,温仕娟. 井下无缆在线智能分注技术研究与应用. 石油化工自动化. 2025(01): 17-21 .
    3. 刘铁明,王柳,薛德栋,寇磊. 海上油田分层注气井下气体流量测试技术研究. 石油矿场机械. 2025(02): 7-14 .
    4. 窦金虎. 有缆智能一体化分注管柱在海上7″尾管注水井中的应用. 机电信息. 2024(08): 42-44 .
    5. 邹剑,刘长龙,张璐,张乐,陈征. 渤海油田智能分注技术研究现状及新进展. 中国海上油气. 2024(05): 170-177 .
    6. 刘义刚,刘长龙,张磊,张乐,薛德栋,徐元德. 海上油田压力波控制高效测调注水技术. 中国海上油气. 2024(05): 137-145 .
    7. 薛德栋,郭沛文,张成富,张磊,王瑶,沈琼,丁德吉. 渤海油田高效投捞无缆分注工艺研究及应用. 石油机械. 2024(10): 132-137 .
    8. 王勇,石张泽,卢晓辉. 有缆智能分层采油技术及其应用. 天津科技. 2024(12): 45-48 .
    9. 乔志学. 缆控智能分注技术现场试验与应用. 石油石化节能. 2023(03): 18-23 .
    10. 杨树坤,李越,廖朝辉,赵广渊,杜晓霞中. 渤海油田无缆智能分注技术优化及应用. 钻采工艺. 2023(03): 60-65 .
    11. 刘长龙,陈征,张乐,徐元德,蒋少玖,王威. 有缆智能配水器O形圈密封模拟研究. 液压气动与密封. 2023(08): 91-96 .
    12. 韩照阳,刘国振,张帅,吉洋. 过电缆压缩隔离密封工具研究与应用. 石化技术. 2023(10): 110-112 .
    13. 邹剑,刘长龙,郑灵芸,陈征,张伦玮. 井下永置式测调技术流量计研究现状及发展方向. 化工自动化及仪表. 2023(06): 729-735 .
    14. 孟祥海,夏欢,李彦阅,陈征,王楠,罗云龙,曹豹. 智能分注分采技术应用效果及其影响因素研究. 当代化工. 2022(01): 156-159 .
    15. 赵广渊,王天慧,杨树坤,李翔,吕国胜,杜晓霞. 渤海油田液压控制智能分注优化关键技术. 石油钻探技术. 2022(01): 76-81 . 本站查看
    16. 王东,王良杰,张凤辉,杨万有,程心平. 渤海油田分层注水技术研究现状及发展方向. 中国海上油气. 2022(02): 125-137 .
    17. 朱孟涛,李杨杨. 渤海油田含硫化氢井修井技术. 天津化工. 2022(03): 102-104 .
    18. 陈征,刘长龙,张乐,徐元德,王威,蒋少玖,张志熊. 小尺寸高温电缆测调系统研究. 仪器仪表用户. 2022(07): 15-18+4 .
    19. 张乐,刘长龙,陈征,徐元德,王威,蒋少玖,张志熊. 小尺寸高温电缆测调工作筒技术研究. 仪器仪表用户. 2022(08): 1-4 .
    20. 宋铭. 单孔悬开式堵塞器及其应用. 化学工程与装备. 2022(07): 151-154 .
    21. 赵仲浩,黄新春,张成富,丁德吉. 海上油田分层采油井缆控对接式智能配产新技术. 中国海上油气. 2022(04): 213-217 .
    22. 杨玲智,周志平,杨海恩,李法龙,胡改星. 井下柔性复合管预置电缆数字式分注技术. 石油钻探技术. 2022(06): 120-125 . 本站查看
    23. 王超. 偏心分层注水井一体化验封测调工具研制. 石油矿场机械. 2021(01): 73-76 .
    24. 毕天琪,杨晓东,田东海,牟燕. 智能分注分层流量自动比对测试技术研究与应用. 油气田地面工程. 2021(02): 11-14+21 .
    25. 邢晓光,方正,张辉,王鹏,王潇祎,郭玉廷. 智能分层射流泵排液技术. 油气井测试. 2021(01): 21-25 .
    26. 杨树坤,赵广渊,李啸峰,郭宏峰,杜晓霞,廖朝辉. 注水井智能无级调节配水器水嘴结构优选及评价. 河南科学. 2021(02): 196-203 .
    27. 谷元伟. 注水井智能分层测调技术的现场应用. 化学工程与装备. 2021(03): 27-28 .
    28. 孙林,李旭光,黄利平,夏光,杨淼. 渤海油田注水井延效酸化技术研究与应用. 石油钻探技术. 2021(02): 90-95 . 本站查看
    29. 赵广渊,季公明,杨树坤,吕国胜,杜晓霞,郭宏峰. 液控智能分注工艺调配及分层注水量计算方法. 断块油气田. 2021(02): 258-261 .
    30. 张斌,左凯,李宁,齐海涛. 海上智能分层配注器研究. 中国石油和化工标准与质量. 2021(07): 51-52 .
    31. 陈征,张乐,蓝飞,张晓冉,宋鑫,张志熊,王威,徐元德. 渤海油田智能分注技术应用现状及发展前景. 辽宁化工. 2021(05): 623-626 .
    32. 孟祥海,陈征,蓝飞,张乐,张志熊,赵广渊. 无缆智能配水器流量测试系统的优化与改进. 北京石油化工学院学报. 2021(02): 19-23 .
    33. 杨树坤,李越,李翔,郭宏峰,季公明,史景岩. 渤海油田测调一体分注关键技术改进及应用. 石油化工高等学校学报. 2021(04): 91-96 .
    34. 李鹏伟,王建宁,姜燕,苏毅,张旭,赵非,陈军政. 桥式同心分注井验封测调一体化工具研制及应用. 石油矿场机械. 2021(05): 84-89 .
    35. 党博,王新亚,刘长赞,任博文,杨玲. 永置式智能井监测系统多层半双工通信技术. 仪表技术与传感器. 2021(10): 109-114 .
    36. 李耀泽. 注水井智能测调管柱的应用及故障分析. 石化技术. 2021(09): 107-108 .
    37. 何海峰. 胜利海上疏松砂岩油藏分层防砂分层采油技术. 石油钻探技术. 2021(06): 99-104 . 本站查看
    38. 张智,杨昆,刘和兴,李磊,梁继文. 注水井井筒完整性设计方法. 石油钻采工艺. 2020(01): 76-85 .
    39. 郭宏峰,杨树坤,段凯滨,季公明,史景岩,安宗辉. 渤海油田可反洗测调一体分层注水工艺. 石油钻探技术. 2020(03): 97-101 . 本站查看
    40. 徐兴安,张凤辉,杨万有. 海上油田注水井智能监测与控制技术研究. 当代化工. 2020(07): 1396-1399 .
    41. 刘义刚,孟祥海,张云宝,夏欢,曹豹,罗云龙. 海上油田分注分采效果及其影响因素数值模拟——以渤海SZ36–1油田为例. 石油地质与工程. 2020(04): 95-101 .
    42. 肖国华,黄晓蒙,李会杰,关海峰. 直读测调偏心恒流配水器研制. 特种油气藏. 2020(05): 151-156 .
    43. 夏欢,刘义刚,孟祥海,张志熊,蓝飞,曹豹,罗云龙. 分层注水配注方法及其影响因素数值模拟研究. 辽宁化工. 2020(12): 1567-1573 .
    44. 刘佳. 影响注水井洗井质量的因素分析. 化学工程与装备. 2019(07): 144-145 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (2852) PDF downloads (2976) Cited by(53)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return