ZHANG Jian, XIAO Yuhan, ZHOU Zhongyi, et al. Downhole WOB prediction method based on CNN-Bi-LSTM network optimized by TDCSO [J]. Petroleum Drilling Techniques, 2024, 52(5):82−90. DOI: 10.11911/syztjs.2024098
Citation: ZHANG Jian, XIAO Yuhan, ZHOU Zhongyi, et al. Downhole WOB prediction method based on CNN-Bi-LSTM network optimized by TDCSO [J]. Petroleum Drilling Techniques, 2024, 52(5):82−90. DOI: 10.11911/syztjs.2024098

Downhole WOB Prediction Method Based on CNN-Bi-LSTM Network Optimized by TDCSO

More Information
  • Received Date: June 17, 2024
  • Revised Date: September 11, 2024
  • Available Online: September 28, 2024
  • In order to accurately predict downhole weight on bit (WOB), improve drilling efficiency, and reduce drilling cost, a hybrid model combining bidirectional long short-term memory network (Bi-LSTM) and convolutional neural network (CNN) was established. The model used the trigonometric function-driven particle swarm optimization (TDCSO) method for hyperparameter optimization, so as to improve the accuracy of WOB prediction. The public data sets of Well FORGE 58−32 and Well FORGE 58−62 in Utah were used to verify the established model, and the model performance was evaluated by the mean absolute error (MAE), root mean square error (RMSE), coefficient of determination, and mean square error (MSE). The results show that the proposed TDCSO-CNN-Bi-LSTM model achieves excellent results in three key indicators of MAE, MSE, and RMSE, and the coefficient of determination was higher than 0.98, which is significantly better than the existing methods such as LSTM, GRU, CNN-LSTM and CNN-Bi-LSTM, etc. The study shows that the proposed TDCSO-CNN-Bi-LSTM model has excellent accuracy in downhole WOB prediction and enables real-time monitoring. It can be integrated with an automated drilling system to achieve precise control of WOB. This not only improves drilling efficiency but also reduces drilling cost, which has important practical application value for future drilling operations.

  • [1]
    FU Jianhong, REN Zhipeng, BAI Jing, et al. The friction-reducing principle and application of the drill string with a hydroos-cillator[J]. Journal of Petroleum Science & Engineering, 2018, 165: 453–461.
    [2]
    XU Baolong, LIU Songyong, LI Hongsheng. Drill string’s axial force transfer law in slide directional drilling in underground coal mine[J]. Tunnelling and Underground Space Technology, 2022, 130: 104701. doi: 10.1016/j.tust.2022.104701
    [3]
    WANG Chao, LIU Gonghui, LI Jun, et al. New methods of eliminating downhole WOB measurement error owing to temperature variation and well pressure differential[J]. Journal of Petroleum Science & Engineering, 2018, 171: 1420–1432.
    [4]
    吴泽兵,谷亚冰,姜雯,等. 基于遗传优化算法的井底钻压智能预测模型[J]. 石油钻采工艺,2023,45(2):151–159.

    WU Zebing, GU Yabing, JIANG Wen, et al. Intelligent prediction models of downhole weight on bit based on genetic optimization algorithm[J]. Oil Drilling & Production Technology, 2023, 45(2): 151–159.
    [5]
    李臻,宋先知,李根生,等. 基于双输入序列到序列模型的井眼轨迹实时智能预测方法[J]. 石油钻采工艺,2023,45(4):393–403.

    LI Zhen, SONG Xianzhi, LI Gensheng, et al. Real-time intelligent prediction of well trajectory based on dual-input sequence-to-sequence model[J]. Oil Drilling & Production Technology, 2023, 45(4): 393–403.
    [6]
    王海涛,王建华,邱晨,等. 基于双向长短期记忆循环神经网络和条件随机场的钻井工况识别方法[J]. 石油钻采工艺,2023,45(5):540–547.

    WANG Haitao, WANG Jianhua, QIU Chen, et al. Recognition method of drilling conditions based on bi-directional long-short term memory recurrent neural network and conditional random field[J]. Oil Drilling & Production Technology, 2023, 45(5): 540–547.
    [7]
    张矿生,宫臣兴,陆红军,等. 基于集成学习的井漏智能预警模型及智能推理方法[J]. 石油钻采工艺,2023,45(1):47–54.

    ZHANG Kuangsheng, GONG Chenxing, LU Hongjun, et al. Intelligent early warning model and intelligent reasoning method based on integrated learning for loss circulation[J]. Oil Drilling & Production Technology, 2023, 45(1): 47–54.
    [8]
    OYEDERE M, GRAY K. Torque-on-bit (TOB) prediction and optimization using machine learning algorithms[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103623. doi: 10.1016/j.jngse.2020.103623
    [9]
    徐海萍. 基于ARIMA-GRNN模型的油井产量动态预测[J]. 世界石油工业,2022,29(1):64–69.

    XU Haiping. Dynamic prediction of oil well yield based on the ARIMA-GRNN model[J]. World Oil Industry, 2022, 29(1): 64–69.
    [10]
    陈宇光. 基于组合模型的天然气管道短期负荷预测[J]. 石油化工自动化,2024,60(2):20–24.

    CHEN Yuguang. Short-term load forecasting of natural gas pipeline based on the combined model[J]. Petrochemical Industry Automation, 2024, 60(2): 20–24.
    [11]
    黄小龙,刘东涛,宋吉明,等. 基于大数据及人工智能的钻速实时优化技术[J]. 石油钻采工艺,2021,43(4):442–448.

    HUANG Xiaolong, LIU Dongtao, SONG Jiming, et al. Real-time ROP optimization technology based on big data and artificial intelligence[J]. Oil Drilling & Production Technology, 2021, 43(4): 442–448.
    [12]
    樊冬艳,杨灿,孙海,等. 基于时间序列相似性与机器学习方法的页岩气井产量预测[J]. 中国石油大学学报(自然科学版),2024,48(3):119–126. doi: 10.3969/j.issn.1673-5005.2024.03.013

    FAN Dongyan, YANG Can, SUN Hai, et al. Shale gas well production forecasting based on time sequence similarity and machine learning methods[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(3): 119–126. doi: 10.3969/j.issn.1673-5005.2024.03.013
    [13]
    肖京男,汪志明,魏建光,等. 改进LSSVM在水平井产能预测中的应用[J]. 石油钻探技术,2010,38(6):95–98. doi: 10.3969/j.issn.1001-0890.2010.06.021

    XIAO Jingnan, WANG Zhiming, WEI Jianguang, et al. Application of LSSVM improved horizontal well productivity prediction[J]. Petroleum Drilling Techniques, 2010, 38(6): 95–98. doi: 10.3969/j.issn.1001-0890.2010.06.021
    [14]
    PAN Shaowei, BO Yang, WANG Shukai, et al. Oil well production prediction based on CNN-LSTM model with self-attention mechanism[J]. Energy, 2023, 284: 128701. doi: 10.1016/j.energy.2023.128701
    [15]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
    [16]
    O’SHEA K, NASH R. An introduction to convolutional neural networks[DB/OL]. (2015-12-02)[2024-06-10]. https://arxiv.org/abs/1511.08458.

    O’SHEA K,NASH R. An introduction to convolutional neural networks[DB/OL]. (2015-12-02)[2024-06-10]. https://arxiv.org/abs/1511.08458.
    [17]
    ELMAZ F, EYCKERMAN R, CASTEELS W, et al. CNN-LSTM architecture for predictive indoor temperature modeling[J]. Building and Environment, 2021, 206: 108327. doi: 10.1016/j.buildenv.2021.108327
    [18]
    孙伟峰,冯剑寒,张德志,等. 结合LSTM自编码器与集成学习的井漏智能识别方法[J]. 石油钻探技术,2024,52(3):61–67. doi: 10.11911/syztjs.2024006

    SUN Weifeng, FENG Jianhan, ZHANG Dezhi, et al. An intelligent lost circulation recognition method using LSTM-autoencoder and ensemble learning[J]. Petroleum Drilling Techniques, 2024, 52(3): 61–67. doi: 10.11911/syztjs.2024006
    [19]
    韩克宁,王伟,樊冬艳,等. 基于产量递减与LSTM耦合的常压页岩气井产量预测[J]. 油气藏评价与开发,2023,13(5):647–656.

    HAN Kening, WANG Wei, FAN Dongyan, et al. Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647–656.
    [20]
    CHEN Zhiming, PENG Dong, WANG Tianyi, et al. Pressure transient analysis in shale wells with heterogeneous fractures by using a deep learning based surrogate model[R]. IPTC 22333, 2022.
    [21]
    RHANOUI M, MIKRAM M, YOUSFI S, et al. A CNN-BiLSTM model for document-level sentiment analysis[J]. Machine Learning and Knowledge Extraction, 2019, 1(3): 832–847. doi: 10.3390/make1030048
    [22]
    KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks. Piscataway, NJ: IEEE Press, 1995: 1942-1948.
    [23]
    JANG J S R, SUN C T, MIZUTANI E. Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [J]. IEEE Transactions on Automatic Control, 1997, 42(10): 1482–1484. doi: 10.1109/TAC.1997.633847
    [24]
    MOAYEDI H, RAFTARI M, SHARIFI A, et al. Optimization of ANFIS with GA and PSO estimating α ratio in driven piles[J]. Engineering with Computers, 2020, 36(1): 227–238. doi: 10.1007/s00366-018-00694-w
    [25]
    周俊,陈璟华,刘国祥,等. 粒子群优化算法中惯性权重综述[J]. 广东电力,2013,26(7):6–12.

    ZHOU Jun, CHEN Jinghua, LIU Guoxiang, et al. Review of inertia weight in particle swarm optimization algorithm[J]. Guangdong Electric Power, 2013, 26(7): 6–12.
    [26]
    王鹏飞,任丽佳,高燕. 基于改进收缩因子的粒子群优化算法[J]. 电子科技,2022,35(5):14–18.

    WANG Pengfei, REN Lijia, GAO Yan. PSO algorithm based on improved contraction factor[J]. Electronic Science and Technology, 2022, 35(5): 14–18.
    [27]
    王俊伟,汪定伟. 粒子群算法中惯性权重的实验与分析[J]. 系统工程学报,2005,20(2):194–198.

    WANG Junwei, WANG Dingwei. Experiment and analysis of inertia weight in particle swarm optimization[J]. Journal of Systems Engineering, 2005, 20(2): 194–198.
    [28]
    MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.
    [29]
    NASH G, MOORE J. Utah FORGE: logs and data from deep well 58-32 (MU-ESW1): 1006[R]. Salt Lake City: Energy and Geoscience Institute at the University of Utah, 2018.
  • Related Articles

    [1]ZHANG Ximin. Optimization Study of Cluster Well Platform Deployment Based on Genetic Algorithm[J]. Petroleum Drilling Techniques, 2024, 52(4): 44-50. DOI: 10.11911/syztjs.2024080
    [2]WU Zebing, YUAN Ruofei, ZHANG Wenxi, LIU Jiale. Optimization Design of Interface Structure for PDC Composite Sheets Based on Multi-Objective Genetic Algorithms[J]. Petroleum Drilling Techniques, 2024, 52(4): 24-33. DOI: 10.11911/syztjs.2024068
    [3]SUN Lin, ZHANG Lei, LI Xuguang, YANG Junwei, XIONG Peiqi. Optimization and Downhole Testing of Hydraulic Impact Tools[J]. Petroleum Drilling Techniques, 2022, 50(5): 108-111. DOI: 10.11911/syztjs.2022052
    [4]WANG Zenglin, LU Mingjing, ZHANG Liaoyuan, LI Aishan, MENG Yong, ZHENG Bintao. Production System Optimization for Enhanced Fracture Network Stimulation in Continental Shale Oil Reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 71-77. DOI: 10.11911/syztjs.2021074
    [5]FENG Jin, CHI Shaolin, ZHANG Manlai, CHEN Wei, HUANG Xinyu. Optimal Design of a Downhole Seismic Generator[J]. Petroleum Drilling Techniques, 2020, 48(5): 120-126. DOI: 10.11911/syztjs.2020117
    [6]WANG Peng, TIAN Yi, FENG Ding, TU Yiliu. Optimization Design Method for Casing String Combination Based on Heuristic Algorithm[J]. Petroleum Drilling Techniques, 2020, 48(2): 42-48. DOI: 10.11911/syztjs.2020011
    [7]Zhao Chongzhen. 3D Fracturing Network Optimization Techniques for Horizontal Wells in Sandstone-Conglomerate Formations[J]. Petroleum Drilling Techniques, 2014, 42(5): 95-99. DOI: 10.11911/syztjs.201405017
    [8]Shao Shangqi, Tian Shouceng, Li Gensheng, He Zhenguo. Fracture Spacing Optimization for Fracture-Network Fracturing in Horizontal Wells[J]. Petroleum Drilling Techniques, 2014, 42(1): 86-90. DOI: 10.3969/j.issn.1001-0890.2014.01.017
    [9]Yin Jian, Guo Jianchun, Zeng Fanhui. Perforation Spacing Optimization for Staged Fracturing of Horizontal Well[J]. Petroleum Drilling Techniques, 2012, 40(5): 67-71. DOI: 10.3969/j.issn.1001-0890.2012.05.015
    [10]Liu Bing, Xu Xingping, Li Jizhi. Application of SQP Algorithm to Optimize Perforation in Horizontal Wells[J]. Petroleum Drilling Techniques, 2012, 40(3): 97-101. DOI: 10.3969/j.issn.1001-0890.2012.03.020

Catalog

    Article Metrics

    Article views (221) PDF downloads (53) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return