CHEN Xianjun, GUO Shusheng, LIAO Gaolong, et al. Design of AI-based detection system for rock cuttings fluorescence of logging [J]. Petroleum Drilling Techniques, 2024, 52(5):130−137. DOI: 10.11911/syztjs.2024091
Citation: CHEN Xianjun, GUO Shusheng, LIAO Gaolong, et al. Design of AI-based detection system for rock cuttings fluorescence of logging [J]. Petroleum Drilling Techniques, 2024, 52(5):130−137. DOI: 10.11911/syztjs.2024091

Design of AI-Based Detection System for Rock Cuttings Fluorescence of Logging

More Information
  • Received Date: May 05, 2023
  • Revised Date: September 09, 2024
  • Available Online: September 11, 2024
  • Existing fluorescent logging detection methods have problems such as single activation light source, limited quantitative evaluation accuracy, and complex detection calculation. To address these issues, an artificial intelligence (AI)-based detection system for rock cuttings fluorescence of logging was developed, so as to detect oily substances rapidly. In order to adapt to the characteristics of different cuttings samples, the lamp source wavelength could be freely adjusted according to the type and area of cuttings, and the cuttings samples could be shot with industrial cameras to collect high-definition images easily detected by deep learning algorithms. An improved DeepLab v3+ algorithm embedded in a mobile device was used to detect cuttings fluorescence, calculate the fluorescence ratio, and display the results and detection images on the mobile device screen. Tests of various cuttings samples show that the system achieves an average intersection over union of 72.73% in detecting cuttings fluorescence, ensuring both accuracy and timeliness while quantifying fluorescent areas in the rock samples. The intelligent detection system for cuttings fluorescence based on the improved DeepLab v3+ algorithm eliminates uncertainties present in manual fluorescence detection processes of cuttings and meets the practical needs of fluorescent logging technology for cuttings fluorescence detection.

  • [1]
    吕心愿. 定量荧光录井在石油勘探中的应用[J]. 中国石油和化工标准与质量,2019,39(12):165–166. doi: 10.3969/j.issn.1673-4076.2019.12.080

    LYU Xinyuan. Application of quantitative fluorescence logging in petroleum exploration[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(12): 165–166. doi: 10.3969/j.issn.1673-4076.2019.12.080
    [2]
    王志战. 中国石化录井技术新进展与发展方向思考[J]. 石油钻探技术,2023,51(4):124–133. doi: 10.11911/syztjs.2023027

    WANG Zhizhan. Thoughts for new progress and development directions of Sinopec’s surface logging technology[J]. Petroleum Drilling Techniques, 2023, 51(4): 124–133. doi: 10.11911/syztjs.2023027
    [3]
    吴胜和,蔡正旗,施尚明. 油矿地质学[M]. 4版. 北京:石油工业出版社,2011:22-69.

    WU Shenghe, CAI Zhengqi, SHI Shangming. Oil geology[M]. 4th ed. Beijing: Petroleum Industry Press, 2011: 22-69.
    [4]
    任特. PDC钻头条件下石油录井中岩屑岩性识别方法研究[J]. 中国石油和化工标准与质量,2023,43(21):85–87. doi: 10.3969/j.issn.1673-4076.2023.21.029

    REN Te. Study on cuttings lithology identification methods in petroleum logging under PDC bit conditions[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(21): 85–87. doi: 10.3969/j.issn.1673-4076.2023.21.029
    [5]
    安文武,苏金龙,刘树坤,等. 定量荧光录井技术在石油勘探中的应用探讨[J]. 录井技术,2000,11(4):35–42.

    AN Wenwu, SU Jinlong, LIU Shukun, et al. The application discussion of quantitative fluorescence logging technology in oil exploration[J]. Mud Logging Engineering, 2000, 11(4): 35–42.
    [6]
    HUO Fengcai, LI Ang, ZHAO Xiaoqing, et al. Novel lithology identification method for drilling cuttings under PDC bit condition[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108898. doi: 10.1016/j.petrol.2021.108898
    [7]
    湛建利,丁群,桂传松,等. 录井岩样荧光面积定量化分析软件开发[J]. 录井工程,2022,33(2):30–34. doi: 10.3969/j.issn.1672-9803.2022.02.006

    ZHAN Jianli, DING Qun, GUI Chuansong, et al. Development of fluorescence area quantitative analysis software for mud logging rock samples[J]. Mud Logging Engineering, 2022, 33(2): 30–34. doi: 10.3969/j.issn.1672-9803.2022.02.006
    [8]
    夏文鹤,谢万洋,唐印东,等. 砂样岩屑图像特征的岩性智能高效识别[J]. 石油地球物理勘探,2023,58(3):495–506.

    XIA Wenhe, XIE Wanyang, TANG Yindong, et al. Intelligent and efficient lithology identification based on image features of returned cuttings[J]. Oil Geophysical Prospecting, 2023, 58(3): 495–506.
    [9]
    孙伟峰,冯剑寒,张德志,等. 结合LSTM自编码器与集成学习的井漏智能识别方法[J]. 石油钻探技术,2024,52(3):61–67. doi: 10.11911/syztjs.2024006

    SUN Weifeng, FENG Jianhan, ZHANG Dezhi, et al. An intelligent lost circulation recognition method using LSTM-autoencoder and ensemble learning[J]. Petroleum Drilling Techniques, 2024, 52(3): 61–67. doi: 10.11911/syztjs.2024006
    [10]
    孙伟峰,刘凯,张德志,等. 结合钻井工况与Bi-GRU的溢流与井漏监测方法[J]. 石油钻探技术,2023,51(3):37–44. doi: 10.11911/syztjs.2023043

    SUN Weifeng, LIU Kai, ZHANG Dezhi, et al. A kick and lost circulation monitoring method combining Bi-GRU and drilling conditions[J]. Petroleum Drilling Techniques, 2023, 51(3): 37–44. doi: 10.11911/syztjs.2023043
    [11]
    CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Computer Vision: ECCV 2018. Cham: Springer, 2018: 833-851.
    [12]
    王聪,李恒,薛晓军,等. 基于OTSU分割和融合的非均匀光照水下图像增强[J]. 光电子·激光,2022,33(1):30–36.

    WANG Cong, LI Heng, XUE Xiaojun, et al. Underwater image enhancement with nonuniform illumination based on OTSU segmentation and fusion[J]. Journal of Optoelectronics·Laser, 2022, 33(1): 30–36.
    [13]
    HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, NJ: IEEE, 2019: 1314-1324.
    [14]
    张益明,张繁昌,丁继才,等. 基于混合深度学习网络的致密砂岩甜点预测[J]. 石油物探,2021,60(6):995–1002. doi: 10.3969/j.issn.1000-1441.2021.06.013

    ZHANG Yiming, ZHANG Fanchang, DING Jicai, et al. Sweet spot prediction in tight sand reservoirs by a hybrid deep-learning network[J]. Geophysical Prospecting for Petroleum, 2021, 60(6): 995–1002. doi: 10.3969/j.issn.1000-1441.2021.06.013
    [15]
    李昂. PDC的钻头条件下岩屑图像含油岩性识别方法研究[D]. 大庆:东北石油大学,2022.

    LI Ang. Research on lithology identification method of cuttings image under PDC bit condition[D]. Daqing: Northeast Petroleum University, 2022.
    [16]
    姚树新,程浩然,熊钊,等. 基于岩屑定量数字化分析的吉木萨尔页岩油储层表征方法[J]. 石油钻采工艺,2022,44(1):117–122.

    YAO Shuxin, CHENG Haoran, XIONG Zhao, et al. Method characterizing shale oil reservoirs in Jimsar based on quantitative digital analysis of cuttings[J]. Oil Drilling & Production Technology, 2022, 44(1): 117–122.
    [17]
    夏文鹤,唐印东,李皋,等. 砂样图像岩屑自动分割提取方法[J]. 岩石矿物学杂志,2023,42(6):894–906.

    XIA Wenhe, TANG Yindong, LI Gao, et al. Automatic segmentation and extraction method for rock debris in sandstone sample images[J]. Acta Petrologica et Mineralogica, 2023, 42(6): 894–906.
    [18]
    曹凯奇,张凌浩,徐虹,等. 基于改进DeepLab V3+的引导式道路提取方法及在震源点位优化中的应用[J]. 西安石油大学学报(自然科学版),2024,39(2):128–142. doi: 10.3969/j.issn.1673-064X.2024.02.016

    CAO Kaiqi, ZHANG Linghao, XU Hong, et al. Guided road extraction method based on improved DeepLab V3+ and its application in optimization of source positions[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2024, 39(2): 128–142. doi: 10.3969/j.issn.1673-064X.2024.02.016
    [19]
    朱丽娟,冯春,刘芯言,等. 融合注意力与残差网络的石油管材失效宏观影像智能识别方法[J]. 石油管材与仪器,2024,10(1):33–40.

    ZHU Lijuan, FENG Chun, LIU Xinyan, et al. Intelligent analysis of macro failure image of oil country tubular goods[J]. Petroleum Tubular Goods & Instruments, 2024, 10(1): 33–40.
    [20]
    HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17)[2023-04-28]. https://arxiv.org/abs/1704.04861.
    [21]
    CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2017: 1800-1807.
    [22]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2016: 770-778.
  • Related Articles

    [1]SUN Zhengxin, JIN Yan, SU Qianxiao, MENG Han, GUO Xuyang, REN Yili. Lamination Type Recognition with Artificial Intelligence Based on Optical Thin Section[J]. Petroleum Drilling Techniques, 2025, 53(1): 75-85. DOI: 10.11911/syztjs.2025020
    [2]MA Shanshan, LI Weiqin, YANG Zhaoxiang, YIN Li, ZHANG Guohui. Seismoelectric logging signal detection based on stochastic resonance system[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025045
    [3]WANG Biao, LI Jun, YANG Hongwei, ZHAN Jiahao, ZHANG Geng, LONG Zhenyu. An Early Intelligent Kick Detection Method Based on Variation Trend of Engineering Parameters[J]. Petroleum Drilling Techniques, 2024, 52(5): 145-153. DOI: 10.11911/syztjs.2024093
    [4]YANG Liqiang. Development and Application of Intelligent Control Devices for BOPs[J]. Petroleum Drilling Techniques, 2024, 52(5): 138-144. DOI: 10.11911/syztjs.2024088
    [5]SHENG Mao, FAN Longang, ZHANG Shuai, ZHANG Yanjun, LI Chuan, TIAN Shouceng. Intelligent Diagnosis for Effectiveness of Data-Knowledge Mixed-Driven Fracturing Ball Seat Setting[J]. Petroleum Drilling Techniques, 2024, 52(5): 76-81. DOI: 10.11911/syztjs.2024085
    [6]GAO Zelin, WANG Jiaqi, ZHANG Qizi. Research on Architecture of Intelligent Logging Interpretation Software Platform[J]. Petroleum Drilling Techniques, 2024, 52(4): 128-134. DOI: 10.11911/syztjs.2023119
    [7]SUN Weifeng, FENG Jianhan, ZHANG Dezhi, LI Weihua, LIU Kai, DAI Yongshou. An Intelligent Lost Circulation Recognition Method Using LSTM-Autoencoder and Ensemble Learning[J]. Petroleum Drilling Techniques, 2024, 52(3): 61-67. DOI: 10.11911/syztjs.2024006
    [8]HAN Yujiao. Intelligent Fluid Identification Based on the AdaBoost Machine Learning Algorithm for Reservoirs in Daniudi Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(1): 112-118. DOI: 10.11911/syztjs.2022018
    [9]ZHANG Bo, LUO Fangwei, SUN Bingcai, XIE Junfeng, XU Zhixiong, LIAO Hualin. A Method for Wellbore Integrity Detection in Deep Oil and Gas Wells[J]. Petroleum Drilling Techniques, 2021, 49(5): 114-120. DOI: 10.11911/syztjs.2021127
    [10]LI Wei, XIA Yang, CHEN Xi. Design and Experimental Study of an RFID Intelligent Sliding Sleeve[J]. Petroleum Drilling Techniques, 2019, 47(6): 83-88. DOI: 10.11911/syztjs.2019123

Catalog

    Article Metrics

    Article views (143) PDF downloads (59) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return