WANG Junze, LI Qian, YIN Hu. Architecture of intelligent early warning system for complex drilling risks based on digital twin technology [J]. Petroleum Drilling Techniques, 2024, 52(5):154−162. DOI: 10.11911/syztjs.2024082
Citation: WANG Junze, LI Qian, YIN Hu. Architecture of intelligent early warning system for complex drilling risks based on digital twin technology [J]. Petroleum Drilling Techniques, 2024, 52(5):154−162. DOI: 10.11911/syztjs.2024082

Architecture of Intelligent Early Warning System for Complex Drilling Risks Based on Digital Twin Technology

More Information
  • Received Date: November 08, 2023
  • Revised Date: September 09, 2024
  • Available Online: September 24, 2024
  • To reduce the complex drilling risks induced by uncertain geological conditions in deep formations, the digital twin technology has been adopted to construct a digital twin intelligent risk early warning system for complex drilling risks based on the fusion of physical models and data-driven models. In order to meet the actual requirements of early warning while drilling and risk reduction, four supporting technologies of digital twin early warning system were proposed, including microservice-based data integration, intelligent perception of digital twins, multimodal fusion early warning, and intelligent diagnosis of digital twins. The overall architecture of the digital twin early warning system for drilling has been established, and its functions and model design were described in detail. The system involved a five-layer interaction system, including physical device layer, virtual entity layer, digital twin data layer, digital twin algorithm model layer, and digital twin early warning service layer. Three application scenarios have been designed, including pre-drilling risk avoidance rehearsal, real-time warning during drilling, and post-drilling analysis of block risk situations to optimize block drilling design. This system has achieved several functions, such as digital integration of multi-source heterogeneous data, multiple fusion of traditional physical models with intelligent models, warning and type identification of overflow, lost circulation, and pipe sticking, etc. Therefore, the risks associated with deep drilling operations have been reduced and drilling efficiency has been optimized. The study results indicate that the digital twin warning architecture based on “model + data” has the potential to identify drilling risks and diagnose risk types in advance during drilling, providing new technology approaches for intelligent drilling risk early warning.

  • [1]
    蒋希文. 钻井事故与复杂问题[M]. 2版. 北京:石油工业出版社,2006:1-9.

    JIANG Xiwen. Drilling accidents and complex problems[M]. 2nd ed. Beijing: Petroleum Industry Press, 2006: 1-9.
    [2]
    张好林,杨传书,李昌盛,等. 钻井数字孪生系统设计与研发实践[J]. 石油钻探技术,2023,51(3):58–65.

    ZHANG Haolin, YANG Chuanshu, LI Changsheng, et al. Design and research practice of a drilling digital twin system[J]. Petroleum Drilling Techniques, 2023, 51(3): 58–65.
    [3]
    KANEKO T, INOUE T, NAKAGAWA Y, et al. Hybrid approach using physical insights and data science for stuck-pipe prediction[J]. SPE Journal, 2024, 29(2): 641–650. doi: 10.2118/218013-PA
    [4]
    胜亚楠. 基于工程参数变化趋势异常诊断的卡钻实时预警方法[J]. 钻探工程,2024,51(1):68–74.

    SHENG Yanan. Real-time early warning of pipe sticking based on abnormal diagnosis of engineering parameter change trend[J]. Drilling Engineering, 2024, 51(1): 68–74.
    [5]
    姜杰,霍宇翔,张颢曦,等. 基于数字孪生的智能钻探服务平台架构[J]. 煤田地质与勘探,2023,51(9):129–137.

    JIANG Jie, HUO Yuxiang, ZHANG Haoxi, et al. Architecture of intelligent service platform for drilling based on digital twin[J]. Coal Geology & Exploration, 2023, 51(9): 129–137.
    [6]
    苏晓眉,张涛,李玉飞,等. 基于K-Means聚类算法的沉砂卡钻预测方法研究[J]. 钻采工艺,2021,44(3):5–9.

    SU Xiaomei, ZHANG Tao, LI Yufei, et al. Research on the sticking prediction method based on K-Means clustering algorithm[J]. Drilling & Production Technology, 2021, 44(3): 5–9.
    [7]
    晏琰,段慕白,黄浩. 基于趋势线法的钻井风险预警技术研究[J]. 钻采工艺,2023,46(2):170–174.

    YAN Yan, DUAN Mubai, HUANG Hao. Research on drilling risk early warning technology based on trend line method[J]. Drilling & Production Technology, 2023, 46(2): 170–174.
    [8]
    王钰豪,郝家胜,张帆,等. 钻井溢流风险的自适应LSTM预警方法[J]. 控制理论与应用,2022,39(3):441–448.

    WANG Yuhao, HAO Jiasheng, ZHANG Fan, et al. Adaptive LSTM early warning method for kick detection in drilling[J]. Control Theory & Applications, 2022, 39(3): 441–448.
    [9]
    胡万俊,夏文鹤,李永杰,等. 气体钻井随钻安全风险智能识别方法[J]. 石油勘探与开发,2022,49(2):377–384.

    HU Wanjun, XIA Wenhe, LI Yongjie, et al. An intelligent identification method of safety risk while drilling in gas drilling[J]. Petroleum Exploration and Development, 2022, 49(2): 377–384.
    [10]
    GRIEVES M. Digital twin: manufacturing excellence through virtual factory replication[R]. White Paper, 2014.
    [11]
    HADJIDEMETRIOU L, STYLIANIDIS N, ENGLEZOS D, et al. A digital twin architecture for real-time and offline high granularity analysis in smart buildings[J]. Sustainable Cities and Society, 2023, 98: 104795. doi: 10.1016/j.scs.2023.104795
    [12]
    AVANZINI G B, ERIKSSON K E. Quality assurance framework of digital twins for the oil and gas industry[R]. OMC 2021-157, 2021.
    [13]
    YANG Chao, CAI Baoping, ZHANG Rui, et al. Cross-validation enhanced digital twin driven fault diagnosis methodology for minor faults of subsea production control system[J]. Mechanical Systems and Signal Processing, 2023, 204: 110813. doi: 10.1016/j.ymssp.2023.110813
    [14]
    陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):1–18.

    TAO Fei, LIU Weiran, ZHANG Meng, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1–18.
    [15]
    苏兴华,詹胜,胡刚. 石油钻井数字孪生架构设计[J]. 信息系统工程,2021(11):26–30.

    SU Xinghua, ZHAN Sheng, HU Gang. Design of digital twin architecture for oil drilling[J]. China CIO News, 2021(11): 26–30.
    [16]
    杨传书. 数字孪生技术在钻井领域的应用探索[J]. 石油钻探技术,2022,50(3):10–16.

    YANG Chuanshu. Exploration for the application of digital twin technology in drilling engineering[J]. Petroleum Drilling Techniques, 2022, 50(3): 10–16.
    [17]
    陆剑锋,张浩,赵荣泳. 数字孪生技术与工程实践:模型+数据驱动的智能系统[M]. 北京:机械工业出版社,2022:219-226.

    LU Jianfeng, ZHANG Hao, ZHAO Rongyong. Digital twin technology and engineering practice: model+data-driven intelligent system[M]. Beijing: China Machine Press, 2022: 219-226.
    [18]
    REGIS A, ARROYAVE-TOBON S, LINARES J M, et al. Physic-based vs data-based digital twins for bush bearing wear diagnostic[J]. Wear, 2023, 526/527: 204888. doi: 10.1016/j.wear.2023.204888
    [19]
    陶飞,马昕,胡天亮,等. 数字孪生标准体系[J]. 计算机集成制造系统,2019,25(10):2405–2418.

    TAO Fei, MA Xin, HU Tianliang, et al. Research on digital twin standard system[J]. Computer Integrated Manufacturing Systems, 2019, 25(10): 2405–2418.
    [20]
    朱硕,宋先知,李根生,等. 钻柱摩阻扭矩智能实时分析与卡钻趋势预测[J]. 石油钻采工艺,2021,43(4):428–435.

    ZHU Shuo, SONG Xianzhi, LI Gensheng, et al. Intelligent real-time drag and torque analysis and sticking trend prediction of drill string[J]. Oil Drilling & Production Technology, 2021, 43(4): 428–435.
    [21]
    李紫璇,张菲菲,祝钰明,等. 钻井模型与机器学习耦合的实时卡钻预警技术[J]. 石油机械,2022,50(4):15–21.

    LI Zixuan, ZHANG Feifei, ZHU Yuming, et al. Real-time pipe sticking early warning technology based on coupling of drilling model and machine learning[J]. China Petroleum Machinery, 2022, 50(4): 15–21.
    [22]
    尹虎,王海彪. 基于CBR的井漏复杂事故的智能预警方法研究[J]. 科技通报,2018,34(4):195–199.

    YIN Hu, WANG Haibiao. Intelligent research of complex loss circulation’ warning based on CBR[J]. Bulletin of Science and Technology, 2018, 34(4): 195–199.
  • Related Articles

    [1]ZHOU Chengxiang, FANG Dazhi, WANG Xu, LI Chengying, WANG Zhifeng. The Improvement and Application of Fracturing Technology in the Nanchuan Shale Gas Field[J]. Petroleum Drilling Techniques, 2025, 53(2): 133-142. DOI: 10.11911/syztjs.2025010
    [2]ZHOU Shiming, LU Peiqing. Advancements and Prospects of Monitoring and Intelligent PerceptionTechnology for Wellbore Sealing Integrity[J]. Petroleum Drilling Techniques, 2024, 52(5): 35-41. DOI: 10.11911/syztjs.2024097
    [3]DING Shidong, LU Peiqing, GUO Yintong, LI Zaoyuan, LU Yunhu, ZHOU Shiming. Progress and Prospect on the Study of Full Life Cycle Sealing Integrity of Cement Sheath in Complex Environments[J]. Petroleum Drilling Techniques, 2023, 51(4): 104-113. DOI: 10.11911/syztjs.2023076
    [4]CAI Jiguang, WANG Chuan, FANG Haoqing, GOU Bo, WANG Kun, REN Jichuan. Evaluation Method for the Conductivity of Full-Length Sand-Packed Acid-Etched Fractures[J]. Petroleum Drilling Techniques, 2023, 51(1): 78-85. DOI: 10.11911/syztjs.2023015
    [5]CHEN Chaofeng, WANG Bo, WANG Jia, XU Yiwen, QIN Yingmin, LI Xuebin. Fracturing Technologies for Horizontal Wells in the Second-Class Shale Oil Reservoirs of the Lower Sweet Spot Areas in Jimusar[J]. Petroleum Drilling Techniques, 2021, 49(4): 112-117. DOI: 10.11911/syztjs.2021089
    [6]YANG Dekai. Key Technology on Ball Seat Fishing Mechanism of Full Bore Size Sleeves[J]. Petroleum Drilling Techniques, 2017, 45(4): 75-80. DOI: 10.11911/syztjs.201704013
    [7]ZHAO Chuanwei, LI Yun, LI Guofeng, DONG Enbo, SUN Haoyu. Design Optimization of Full Bore Stimulation Sleeves with Ball Drop Counting using the Taguchi Method[J]. Petroleum Drilling Techniques, 2017, 45(1): 97-103. DOI: 10.11911/syztjs.201701017
    [8]Wang Jinbo, Wang Zhiyuan, Zhang Weiguo, Xie Hua, Sun Baojiang. Well Control Safety Operation Cycle during Typhoon at Deep Waters of South China Sea[J]. Petroleum Drilling Techniques, 2013, 41(3): 51-55. DOI: 10.3969/j.issn.1001-0890.2013.03.010
    [9]Wu Lixin, Chen Ping, Zhu Xiaohua, Zhang Wenhua, Jia Yanjie, Li Jinhe. Contrast of Fatigue Failure Cycles of Drill String during Gas Drilling[J]. Petroleum Drilling Techniques, 2012, 40(1): 42-46. DOI: 10.3969/j.issn.1001-0890.2012.01.009
    [10]Sidney Green. Full-Scale Deep Well Drilling Simulation[J]. Petroleum Drilling Techniques, 2011, 39(3): 1-5. DOI: 10.3969/j.issn.1001-0890.2011.03.001
  • Cited by

    Periodical cited type(42)

    1. 王敬,张洪权,姬泽敏,刘子龙,刘慧卿. 低渗-致密油藏注气吞吐CO_2—原油相互作用与传质规律. 石油学报. 2025(01): 265-278 .
    2. 柳军,袁明健,杜智刚. 分簇射孔管串泵送排量模型及影响因素分析. 中国海上油气. 2025(02): 198-209 .
    3. 武晓光,龙腾达,黄中伟,高文龙,李根生,谢紫霄,杨芮,鲁京松,马金亮. 页岩油多岩性交互储层径向井穿层压裂裂缝扩展特征. 石油学报. 2024(03): 559-573+585 .
    4. 孙海英,陈艳,张春刚,王旭东. 中高成熟度页岩油地面工艺探索与认识. 油气田地面工程. 2024(04): 91-95 .
    5. 刘惠民,王敏生,李中超,陈宗琦,艾昆,王运海,毛怡,闫娜. 中国页岩油勘探开发面临的挑战与高效运营机制研究. 石油钻探技术. 2024(03): 1-10 . 本站查看
    6. 孙焕泉,王海涛,杨勇,吕琦,张峰,刘祖鹏,吕晶,陈天成,蒋廷学,赵培荣,吴世成. 陆相断陷湖盆页岩油开发技术迭代与发展方向. 石油勘探与开发. 2024(04): 865-877 .
    7. 高书阳. 苏北陆相页岩油高性能水基钻井液技术. 石油钻探技术. 2024(04): 51-56 . 本站查看
    8. SUN Huanquan,WANG Haitao,YANG Yong,LYU Qi,ZHANG Feng,LIU Zupeng,LYU Jing,CHEN Tiancheng,JIANG Tingxue,ZHAO Peirong,WU Shicheng. Iteration and evaluation of shale oil development technology for continental rift lake basins. Petroleum Exploration and Development. 2024(04): 993-1008 .
    9. 李秋实. 庆城油田页岩油智能化配套技术开发应用研究. 中国管理信息化. 2024(23): 115-120 .
    10. 李宁,冯周,武宏亮,田瀚,刘鹏,刘英明,刘忠华,王克文,徐彬森. 中国陆相页岩油测井评价技术方法新进展. 石油学报. 2023(01): 28-44 .
    11. 孙晨,寇园园,路盼盼,柳文欣,魏奔驰. 页岩油勘探开发关键技术综述. 精细石油化工进展. 2023(02): 39-43 .
    12. 曹长霄,宋兆杰,师耀利,高阳,郭佳,常旭雅. 吉木萨尔页岩油二氧化碳吞吐提高采收率技术研究. 特种油气藏. 2023(03): 106-114 .
    13. 白斌,戴朝成,侯秀林,杨亮,王瑞,王岚,孟思炜,董若婧,刘羽汐. 松辽盆地白垩系青山口组页岩层系非均质地质特征与页岩油甜点评价. 石油与天然气地质. 2023(04): 846-856 .
    14. 许宁,满安静,徐萍,张帅迁,许琬晨,葛艳阳. 非常规油藏补能提采开发方式研究进展及路径优选. 中外能源. 2023(08): 38-46 .
    15. 张宏峰. 页岩油水平井压裂后变形套管液压整形技术. 石油钻探技术. 2023(05): 173-178 . 本站查看
    16. 王春伟,杜焕福,孙鑫,戴彩丽,杨金莉,陈荣华. 基于灰色关联分析的页岩油甜点综合评价方法——以渤海湾盆地渤南洼陷为例. 石油钻探技术. 2023(05): 130-138 . 本站查看
    17. 吴兆亮. 大庆古龙页岩油密切割体积压裂工艺参数优化探索. 油气井测试. 2023(06): 34-40 .
    18. 崔壮,侯冰,付世豪,吕嘉昕. 页岩油致密储层一体化压裂裂缝穿层扩展特征. 断块油气田. 2022(01): 111-117 .
    19. 张仁贵,刘迪仁,彭成,刘宇峰. 中国陆相页岩油勘探开发现状及展望. 现代化工. 2022(03): 6-10 .
    20. 张矿生,唐梅荣,陶亮,杜现飞. 庆城油田页岩油水平井压增渗一体化体积压裂技术. 石油钻探技术. 2022(02): 9-15 . 本站查看
    21. 陈志明,赵鹏飞,曹耐,廖新维,王佳楠,刘辉. 页岩油藏压裂水平井压–闷–采参数优化研究. 石油钻探技术. 2022(02): 30-37 . 本站查看
    22. 熊晓菲,盛家平. 吉木萨尔页岩油藏泡沫辅助注气吞吐试验研究. 石油钻探技术. 2022(02): 22-29 . 本站查看
    23. 宁凯. 页岩油储层改造和高效开发技术研究. 化工管理. 2022(12): 65-67 .
    24. 何潇宁,何璇,贾潇,孙靖虎,殷佼龙,罗劼欣,邓宝康. 二氧化碳开发非常规能源研究进展. 现代化工. 2022(05): 40-44 .
    25. 王坤,郭彬程,林世国,李志欣. 中国陆相页岩石油资源地位与发展机遇. 能源与节能. 2022(08): 1-7 .
    26. 黄越,金智荣. 花庄区块页岩油密切割体积压裂对策研究. 石油地质与工程. 2022(05): 96-100 .
    27. 陈晓平,张宝娟,陈小东,张振红,徐建军,王楠. 非常规油田开发产量和投资极限指标评价模型建立及应用. 油气与新能源. 2022(05): 116-121 .
    28. 徐长贵,邓勇,范彩伟,李才,游君君. 北部湾盆地涠西南凹陷页岩油地质特征与资源潜力. 中国海上油气. 2022(05): 1-12 .
    29. 黄其励,李全生,李伟起,栗继祖,张凯. 能源革命推动老工业基地转型发展战略研究. 中国工程科学. 2021(01): 79-85 .
    30. 李庆,云庆,王坤,陈朝辉,陈霞. 中高成熟度页岩油及致密油地面工程建设模式及工艺技术. 油气与新能源. 2021(04): 82-89 .
    31. 王栋,赖学明,唐庆,周俊杰. 沧东凹陷页岩油水平井不压井作业技术. 石油钻探技术. 2021(04): 150-154 . 本站查看
    32. 张锦宏. 中国石化页岩油工程技术现状与发展展望. 石油钻探技术. 2021(04): 8-13 . 本站查看
    33. 陈作,刘红磊,李英杰,沈子齐,许国庆. 国内外页岩油储层改造技术现状及发展建议. 石油钻探技术. 2021(04): 1-7 . 本站查看
    34. 韩来聚,杨春旭. 济阳坳陷页岩油水平井钻井完井关键技术. 石油钻探技术. 2021(04): 22-28 . 本站查看
    35. 蒋廷学,王海涛. 中国石化页岩油水平井分段压裂技术现状与发展建议. 石油钻探技术. 2021(04): 14-21 . 本站查看
    36. 田增艳,杨贺卫,李晓涵,尹丽,王信,黄臣. 大港油田页岩油水平井钻井液技术. 石油钻探技术. 2021(04): 59-65 . 本站查看
    37. 赵振峰,李楷,赵鹏云,陶亮. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议. 石油钻探技术. 2021(04): 85-91 . 本站查看
    38. 郝丽华,甘仁忠,潘丽燕,阮东,刘成刚. 玛湖凹陷风城组页岩油巨厚储层直井体积压裂关键技术. 石油钻探技术. 2021(04): 99-105 . 本站查看
    39. 陈超峰,王波,王佳,许译文,秦莹民,李雪彬. 吉木萨尔页岩油下甜点二类区水平井压裂技术. 石油钻探技术. 2021(04): 112-117 . 本站查看
    40. 田福春,刘学伟,张胜传,张高峰,邵力飞,陈紫薇. 大港油田陆相页岩油滑溜水连续加砂压裂技术. 石油钻探技术. 2021(04): 118-124 . 本站查看
    41. 刘克强,李欣,艾磊,李治君,刘志雄,梁宏伟. 旋转导向钻井技术在页岩油水平井的应用与认识. 复杂油气藏. 2021(03): 100-104 .
    42. 林会喜,王圣柱,杨艳艳,刘晓敏. 博格达地区中二叠统芦草沟组页岩油储集特征. 断块油气田. 2020(04): 418-423 .

    Other cited types(14)

Catalog

    Article Metrics

    Article views (341) PDF downloads (138) Cited by(56)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return