MU Lijun, LI Xiangping, YU Wenfeng, et al. Research on the optimal proportions of the new and old fractures in refracturing of horizontal wells in ultra-low permeability reservoirs [J]. Petroleum Drilling Techniques,2023, 51(3):97-104. DOI: 10.11911/syztjs.2023065
Citation: MU Lijun, LI Xiangping, YU Wenfeng, et al. Research on the optimal proportions of the new and old fractures in refracturing of horizontal wells in ultra-low permeability reservoirs [J]. Petroleum Drilling Techniques,2023, 51(3):97-104. DOI: 10.11911/syztjs.2023065

Research on the Optimal Proportions of the New and Old Fractures in Refracturing of Horizontal Wells in Ultra-Low Permeability Reservoirs

More Information
  • Received Date: August 23, 2022
  • Revised Date: June 06, 2023
  • Available Online: June 13, 2023
  • After the initial hydraulic fracturing of the ultra-low permeability oil reservoir, there is a rapid decline in oil production due to the depletion of formation energy and fracture failure. This decline fails to meet the production demands, and the refracturing is needed. In the design of refracturing, the key lies in determining the optimal positioning and number of new fractures. In this study, a numerical simulation model for fracture extension during refracturing of horizontal wells was established, based on the geological characteristics of the Changqing yuan 284 well block oil reservoir and the production data from the initial hydraulic fracturing. A comparative analysis of the reservoir stimulation volume and ultimate developing effect was conducted with varying proportions of new and old fractures. The study found that energy replenishment by water injection before refracturing as a mechanism could effectively improve the reservoir stimulation effect of refracturing. Furthermore, an economic benefit analysis was performed to determine an reasonable proportion of new and old fractures. Simulation results indicated that a favorable condition for the formation of a complex fracture network and increased oil recovery was observed when there were two new fractures by refracturing, with a spacing of 20 m between fractures. As the number of new fractures between two old fractures increased, the formation of a complex fracture network and reservoir stimulation effect were further enhanced. However, a large number of new fractures between old fractures led to mutual interference, resulting in a decrease in the range of production increase during the early stage of development. Nonetheless, as development and production continued, there will be a more thorough reservoir stimulation effect, which is beneficial for stable production in the later period. These research findings offer a theoretical foundation for designing refrcuturing schemes for horizontal wells in ultra-low permeability oil reservoirs.

  • [1]
    窦立荣,汪望泉,肖伟,等. 中国石油跨国油气勘探开发进展及建议[J]. 石油科技论坛,2020,39(2):21–30.

    DOU Lirong, WANG Wangquan, XIAO Wei, et al. Progress and suggestions on CNPC’s multinational oil and gas exploration and development[J]. Petroleum Science and Technology Forum, 2020, 39(2): 21–30.
    [2]
    韩頔. 低渗透油田开发的难点与挖潜对策分析[J]. 石化技术,2019,26(5):145–146.

    HAN Di. Difficulties in low permeability oilfield development and analysis of potential digging strategies[J]. Petrochemical Industry Technology, 2019, 26(5): 145–146.
    [3]
    马国财. 低渗透油藏地质特征与开发对策分析[J]. 化工设计通讯,2019,45(4):238.

    MA Guocai. Geological characteristics and development countermeasures of low permeability reservoirs[J]. Chemical Engineering Design Communications, 2019, 45(4): 238.
    [4]
    杨学峰,张斌,朱胜利,等. 超低渗透油藏开发初期降低递减对策分析[J]. 石油化工应用,2010,29(9):52–55.

    YANG Xuefeng, ZHANG Bin, ZHU Shengli, et al. Analysis of the countermeasures to reduce regression at the early stage of ultra-low permeability reservoir development[J]. Petrochemical Industry Application, 2010, 29(9): 52–55.
    [5]
    周波,叶凯,刘江. 水平井重复压裂改造工艺分析[J]. 中国石油和化工标准与质量,2022,42(3):180–182.

    ZHOU Bo, YE Kai, LIU Jiang. Analysis of refracturing modification process for horizontal wells[J]. China Petroleum and Chemical Standard and Quality, 2022, 42(3): 180–182.
    [6]
    贺代兰. 老井重复压裂工艺技术发展现状[J]. 科技和产业,2021,21(1):264–268. doi: 10.3969/j.issn.1671-1807.2021.01.048

    HE Dailan. Study on the development of repeated fracturing technology in old wells[J]. Science Technology and Industry, 2021, 21(1): 264–268. doi: 10.3969/j.issn.1671-1807.2021.01.048
    [7]
    BARREE R D, MISKIMINS J L, SVATEK K J. Reservoir and completion considerations for the refracturing of horizontal wells[R]. SPE 184837, 2017.
    [8]
    庞鹏,刘振宇,王胡振,等. 重复压裂改造时机数值模拟[J]. 大庆石油地质与开发,2015,34(6):83–87.

    PANG Peng, LIU Zhenyu, WANG Huzhen, et al. Numerical simulation of refracturing opportunity[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(6): 83–87.
    [9]
    TAVASSOLI S, YU Wei, JAVADPOUR F, et al. Well screen and optimal time of refracturing: a Barnett shale well[J]. Journal of Petroleum Engineering, 2013, 2013: 817293.
    [10]
    霍雅迪,江厚顺. 一种基于BP神经网络的气井重复压裂井优选方法[J]. 天然气地球科学,2020,31(4):552–558.

    HUO Yadi, JIANG Houshun. A preferred method for gas well re-fracturing well based on BP neural network[J]. Natural Gas Geoscience, 2020, 31(4): 552–558.
    [11]
    YANG Changdong, XUE Xu, HUANG Jixiang, et al. Rapid refracturing candidate selection in shale reservoirs using drainage volume and instantaneous recovery ratio[R]. URTEC-2459368-MS, 2016.
    [12]
    TAO Liang, GUO Jianchun, ZHAO Zhihong, et al. Refracturing candidate selection for MFHWs in tight oil and gas reservoirs using hybrid method with data analysis techniques and fuzzy clustering[J]. Journal of Central South University, 2020, 27(1): 277–287. doi: 10.1007/s11771-020-4295-0
    [13]
    WANG Zhiguo, LIU Zhongneng, GUI Jie, et al. A solution for mechanical isolation volume refracturing in ultra-low permeability horizontal wells: a case study in Ordos Basin[R]. IPTC-21155-MS, 2021.
    [14]
    ARTUN E,KULGA B. 基于模糊推理的致密砂岩气储集层重复压裂井选择方法[J]. 石油勘探与开发,2020,47(2):383–389. doi: 10.1016/S1876-3804(20)60055-6

    ARTUN E, KULGA B. Selection of candidate wells for re-fracturing in tight gas sand reservoirs using fuzzy inference[J]. Petroleum Exploration and Development, 2020, 47(2): 383–389. doi: 10.1016/S1876-3804(20)60055-6
    [15]
    郭建春,陶亮,曾凡辉. 致密油储集层水平井重复压裂时机优化:以松辽盆地白垩系青山口组为例[J]. 石油勘探与开发,2019,46(1):146–154.

    GUO Jianchun, TAO Liang, ZENG Fanhui. Optimization of refracturing timing for horizontal wells in tight oil reservoirs: a case study of Cretaceous Qingshankou Formation, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2019, 46(1): 146–154.
    [16]
    何海波. 致密油水平井缝网增能重复压裂技术实践[J]. 特种油气藏,2018,25(4):170–174.

    HE Haibo. Practice of re-fracturing with network energization for horizontal well in tight oil reservoir[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 170–174.
    [17]
    蒋廷学,周珺,廖璐璐. 国内外智能压裂技术现状及发展趋势[J]. 石油钻探技术,2022,50(3):1–9.

    JIANG Tingxue, ZHOU Jun, LIAO Lulu. Development status and future trends of intelligent fracturing technologies[J]. Petroleum Drilling Techniques, 2022, 50(3): 1–9.
    [18]
    JAYAKUMAR R, RAI R, BOULIS A, et al. A systematic study for refracturing modeling under different scenarios in shale reser-voirs[R]. SPE 165677, 2013.
    [19]
    HUANG Jixiang, YANG Changdong, XUE Xu, et al. Simulation of coupled fracture propagation and well performance under different refracturing designs in shale reservoirs[R]. SPE 180238, 2016.
    [20]
    任佳伟,王贤君,张先敏,等. 大庆致密油藏水平井重复压裂及裂缝参数优化模拟[J]. 断块油气田,2020,27(5):638–642.

    REN Jiawei, WANG Xianjun, ZHANG Xianmin, et al. Refracturing and fracture parameters optimization simulation for horizontal well in Daqing tight oil reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 638–642.
    [21]
    黄婷,苏良银,达引朋,等. 超低渗透油藏水平井储能压裂机理研究与现场试验[J]. 石油钻探技术,2020,48(1):80–84.

    HUANG Ting, SU Liangyin, DA Yinpeng, et al. Research and field test on energy storage fracturing mechanism of horizontal wells in ultra-low permeability reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(1): 80–84.
    [22]
    胡春桥,任来义,贺永红,等. 鄂尔多斯盆地延长探区油气勘探历程与启示[J]. 新疆石油地质,2021,42(3):312–318.

    HU Chunqiao, REN Laiyi, HE Yonghong, et al. Petroleum exploration history and enlightenment of Yanchang exploration area in Ordos Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3): 312–318.
    [23]
    达引朋, 陆红军, 杨博丽, 等. 低渗透老油田新型多缝重复压裂技术研究与应用[J]. 石油钻探技术, 2015, 43(3): 65-70.

    DA Yinpeng, LU Hongjun, YANG Boli, et al. Research and application of new refracturing technology in low permeability oilfield[J]. Petroleum Drilling Techniques, 2015, 43(3): 65-70.
    [24]
    MASOULEH S F, KUMAR D, GHASSEMI A. Three-dimensional geomechanical modeling and analysis of refracturing and “frac-hits” in unconventional reservoirs[J]. Energies, 2020, 13(20): 5352. doi: 10.3390/en13205352
    [25]
    HUBBERT M K, WILLIS D G. Mechanics of hydraulic frac-turing[J]. Transactions of the AIME, 1957, 210(1): 153–168. doi: 10.2118/686-G
    [26]
    CIPOLLA C L, WARPINSKI N R, MAYERHOFER M J, et al. The relationship between fracture complexity, reservoir properties, and fracture-treatment design[J]. SPE Production & Operations, 2010, 25(4): 438–452.
    [27]
    ZHU Haiyan, TANG Xuanhe, LIU Qingyou, et al. Complex fractures propagations of infill well based on reservoir stress evolution after long-time shale gas production[R]. ARMA-2019-0403, 2019.
  • Related Articles

    [1]LIU Xianghua, YU Yang, LIU Jingtao. Status Quo and Development Suggestions of Key Drilling Technologies for Extra-Deep Wells in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2024, 52(2): 72-77. DOI: 10.11911/syztjs.2024028
    [2]DING Shidong, PANG Wei, ZHOU Jun, YANG dekai, HE Tong. Staged Completion Technology for Ultra-Deep Wells in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2024, 52(2): 66-71. DOI: 10.11911/syztjs.2024046
    [3]HU Wenge. Progress and the Way Forward of Key Engineering Technologies for “Deep Underground Engineering” in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2024, 52(2): 58-65. DOI: 10.11911/syztjs.2024027
    [4]LI Wenxia, WANG Juhe, WANG Zhiguo, YANG Weixing, SHI Yucai. Wellbore Trajectory Control Technologies for Ultra-Deep and High-Temperature Horizontal Wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 18-24. DOI: 10.11911/syztjs.2022073
    [5]CHEN Zongqi, LIU Xianghua, BAI Binzhen, YI Hao. Technical Progress and Development Consideration of Drilling and Completion Engineering for Ultra-Deep Wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 1-10. DOI: 10.11911/syztjs.2022069
    [6]YANG Hongqi, SUN Lianhuan, AO Zhuqing, SANG Laiyu, YANG Guangguo, GAO Yuan. Anti-Leakage Cementing Technology for the Long Well Section below Technical Casing of Ultra-Deep Wells in the No.1 Area of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(6): 33-39. DOI: 10.11911/syztjs.2020110
    [7]LI Xinyong, LI Chunyue, ZHAO Bing, FANG Haoqing, HUANG Yanfei, HU Wenting. Acidizing Technology for Deep Penetration in Main Fault Zone of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 82-87. DOI: 10.11911/syztjs.2020014
    [8]CHEN Xiuping, LI Shuanggui, YU Yang, ZHOU Dan. Anti-Collapse Drilling Fluid Technology for Broken Carbonate Formation in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 12-16. DOI: 10.11911/syztjs.2020005
    [9]ZHAI Kejun, YU Yang, LIU Jingtao, BAI Binzhen. Ultra-Deep Well Drilling Technology in the Igneous Invasion Coverage Area of the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 1-5. DOI: 10.11911/syztjs.2020004
    [10]LIN Yongxue, WANG Weiji, JIN Junbin. Key Drilling Fluid Technology in the Ultra Deep Section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113-120. DOI: 10.11911/syztjs.2019068
  • Cited by

    Periodical cited type(34)

    1. 刘承诚. 基于KPI的裸眼封隔器应用效能评价. 石油矿场机械. 2025(01): 19-23 .
    2. 刘豇瑜,任登峰,秦世勇,张键,晏楠,刘洋. 塔里木盆地富满油田超深缝洞型碳酸盐岩储层立体酸压技术. 大庆石油地质与开发. 2025(03): 77-84 .
    3. 丁士东,庞伟,周珺,杨德锴,何同. 顺北油气田超深井分段完井技术. 石油钻探技术. 2024(02): 66-71 . 本站查看
    4. 黄梁帅. 超深强底水断溶体油藏精细注水技术优化. 粘接. 2024(08): 126-129 .
    5. 王龙,万小勇,林仁奎,李冬梅,徐燕东,朱苏阳. 断控型缝洞气藏酸压规模与无阻流量的关系研究. 钻采工艺. 2024(05): 172-178 .
    6. 蔡计光,王川,房好青,苟波,王琨,任冀川. 全缝长酸蚀填砂裂缝导流能力评价方法. 石油钻探技术. 2023(01): 78-85 . 本站查看
    7. 耿宇迪,蒋廷学,刘志远,罗志锋,王汉青. 深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究. 石油钻探技术. 2023(02): 81-89 . 本站查看
    8. 王支柱,汪文星. 酸压技术在伊拉克X油田的应用研究. 天津科技. 2023(05): 26-29 .
    9. 宋周成,段永贤,何思龙,汪鑫,李伟,陈毅,徐国伟,刘浩. 富满油田超深碳酸盐岩酸压液体体系优化组合及应用. 钻采工艺. 2023(02): 139-145 .
    10. 考佳玮,金衍,韦世明. 缝洞型碳酸盐岩储层人工裂缝扩展数值模拟. 石油科学通报. 2023(03): 303-317 .
    11. 杨兆中,彭擎东,王振普,李小刚,朱静怡,秦杨. 微胶囊固体酸酸化压裂技术应用及展望. 特种油气藏. 2023(03): 1-8 .
    12. 时贤,葛晓鑫,张燕明,黄维安,战永平,古永红,牟春国. 致密白云岩储层加砂压裂裂缝导流能力实验研究. 油气地质与采收率. 2023(04): 167-172 .
    13. 史文洋,杨志豪,朱庆杰,陶磊,白佳佳. 双分支断溶体储层合采水平井压力响应特征. 常州大学学报(自然科学版). 2023(05): 40-52 .
    14. 林永茂,缪尉杰,刘林,李永明,邱玲. 川西南靖和1井茅口组立体酸压技术. 石油钻探技术. 2022(02): 105-112 . 本站查看
    15. 刘芳慧,张世昆,曹耐. 强渗透缓速酸液体系研究与评价. 钻井液与完井液. 2022(03): 365-372 .
    16. 纪成,何天舒,赵兵,罗志锋,陈翔. 纤维强化凝胶合成与性能评价. 钻井液与完井液. 2022(04): 495-500 .
    17. 王辉. 洗象池群改造工艺研究与应用. 江汉石油职工大学学报. 2022(06): 13-15 .
    18. 路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 . 本站查看
    19. 曾庆辉,何东博,朱大伟,崔明月,陈彦东,张鹏. 哈法亚油田孔隙性石灰岩储层酸压先导性试验. 石油钻采工艺. 2021(02): 226-232 .
    20. 王伟峰,杨浩,冯青,寇双燕,黄子俊. 深穿透解堵技术适应性油藏数值模拟研究. 石油化工应用. 2021(05): 11-17 .
    21. 王栋. 酸压用咪唑啉缓蚀剂的合成及性能研究. 化学反应工程与工艺. 2021(01): 65-72 .
    22. 齐宁,陈国彬,李振亮,梁冲,何龙. 基于分步算法的裂缝性碳酸盐岩油藏大尺度酸化数值模拟. 石油学报. 2020(03): 348-362+371 .
    23. 罗明良,巩锦程,战永平,司晓冬,罗帅,李钦朋. 环境友好型交联酸的性能及其反应动力学. 精细化工. 2020(04): 834-840 .
    24. 李春月,房好青,牟建业,黄燕飞,胡文庭. 碳酸盐岩储层缝内暂堵转向压裂实验研究. 石油钻探技术. 2020(02): 88-92 . 本站查看
    25. 安娜,罗攀登,李永寿,方裕燕,焦克波. 碳酸盐岩储层深度酸压用固体颗粒酸的研制. 石油钻探技术. 2020(02): 93-97 . 本站查看
    26. 李双贵,于洋,樊艳芳,曾德智. 顺北油气田超深井井身结构优化设计. 石油钻探技术. 2020(02): 6-11 . 本站查看
    27. 陈修平,李双贵,于洋,周丹. 顺北油气田碳酸盐岩破碎性地层防塌钻井液技术. 石油钻探技术. 2020(02): 12-16 . 本站查看
    28. 操银香,李柏颉,郭媛. 高压注水扩容在缝洞型碳酸盐岩油藏中的应用——以塔河S1井为例. 油气藏评价与开发. 2020(02): 49-53 .
    29. 杨万有,郑春峰,李昂,尹莎莎,郭晓飞,赵展,卢勇. 可控冲击波致裂海上油层可行性分析. 钻采工艺. 2020(01): 38-41+9 .
    30. 王建云,杨晓波,王鹏,范红康. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术. 石油钻探技术. 2020(03): 8-15 . 本站查看
    31. 李子甲,吴霞,黄文强. 深层碳酸盐岩储层有机酸深穿透酸压工艺. 科学技术与工程. 2020(20): 8146-8151 .
    32. 丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议. 石油钻探技术. 2020(04): 11-20 . 本站查看
    33. 雷林,张龙胜,熊炜. 渝东南地区茅口组气藏大石1HF井酸压工艺技术研究. 油气藏评价与开发. 2020(05): 84-90 .
    34. 游利军,孟森,高新平,康毅力,陈明君,邵佳新. 碳酸盐岩储气库储层微粒运移对酸化的响应. 断块油气田. 2020(05): 676-680 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (200) PDF downloads (62) Cited by(40)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return