CHEN Xiuping, LI Shuanggui, YU Yang, ZHOU Dan. Anti-Collapse Drilling Fluid Technology for Broken Carbonate Formation in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 12-16. DOI: 10.11911/syztjs.2020005
Citation: CHEN Xiuping, LI Shuanggui, YU Yang, ZHOU Dan. Anti-Collapse Drilling Fluid Technology for Broken Carbonate Formation in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 12-16. DOI: 10.11911/syztjs.2020005

Anti-Collapse Drilling Fluid Technology for Broken Carbonate Formation in Shunbei Oil and Gas Field

More Information
  • Received Date: May 12, 2019
  • Revised Date: December 17, 2019
  • Available Online: January 07, 2020
  • In order to solve the problem of wellbore collapse in broken carbonate formation of Ordovician in Shunbei Oil and Gas Field, this paper analyzed the cause of wellbore collapse from the characteristics of geological structure, the development and filling of fractures in the formation, and the stress on the wellbore block. It was found that the stress concentration in the strong compression section, the development of micro fractures in the formation and the influence of gravity on the directional interval were the main causes of wellbore collapse. According to the analysis, since the formation fragmentation and stress concentration could not be changed, the problem of wellbore collapse could only be solved by improving the plugging performance of the drilling fluid through effective filling and plugging of micro fractures, preventing the transmission of pressure and maintaining a high density for stress support. Therefore, the anti-collapse drilling fluid was prepared from the aspects of strengthening the plugging ability, controlling the filtration at high temperatures and pressures, optimizing the yield point and plastic viscosity ratio of the drilling fluid, etc., so as to improve its anti-collapse performance. The field test of Well Shunbei X showed that after adopting this anti-collapse drilling fluid technology, the drilling torque was stable, the ROP was high, the hole diameter enlargement ratio was small, and the anti-collapse effect was good, which could provide reference for efficient and safe drilling under the similar conditions.

  • [1]
    梁文利. 涪陵破碎性地层井壁失稳影响因素分析及技术对策[J]. 天然气勘探与开发, 2018, 41(2): 70–73, 82.

    LIANG Wenli. Borehole instability in broken formations of Fuling Block: influence factors and countermeasures[J]. Natural Gas Exploration and Development, 2018, 41(2): 70–73, 82.
    [2]
    张立刚.松辽盆地深层火成岩破碎机理及破岩效率评价[D].大庆: 东北石油大学, 2014.

    ZHANG Ligang. Research on the igneous rock crushing mechanism and efficiency in deep reservoir of Songliao Basin[D]. Daqing: Northeast Petroleum University, 2014.
    [3]
    申瑞臣,屈平,杨恒林. 煤层井壁稳定技术研究进展与发展趋势[J]. 石油钻探技术, 2010, 38(3): 1–7. doi: 10.3969/j.issn.1001-0890.2010.03.001

    SHEN Ruichen, QU Ping, YANG Henglin. Advancement and development of coal bed wellbore stability technology[J]. Petroleum Drilling Techiques, 2010, 38(3): 1–7. doi: 10.3969/j.issn.1001-0890.2010.03.001
    [4]
    蒋廷学, 周珺, 贾文峰, 等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术, 2019, 47(3): 140–147.

    JIANG Tingxue, ZHOU Jun, JIA Wenfeng, et al. Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140–147.
    [5]
    赵锐,赵腾,李慧莉,等. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J]. 特种油气藏, 2019, 26(5): 8–13.

    ZHAO Rui, ZHAO Teng, LI Huili, et al. Fault-controlled fracture-cavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special oil & Gas Reservoirs, 2019, 26(5): 8–13.
    [6]
    CORNIELIS J, BRACHO L, MELENDEZ L, et al. Drilling through highly faulted/fractured zones: case study, an integral approach with successful results[R]. ARMA-2015-665, 2015.
    [7]
    朱金智,邹盛礼,王书琪. 塔参1井破碎性白云岩地层防塌技术[J]. 石油钻探技术, 1999, 27(2): 35–37. doi: 10.3969/j.issn.1001-0890.1999.02.013

    ZHU Jinzhi, ZOU Shengli, WANG Shuqi. Anti-collapse technique for broken dolomite formation in Tacan Well 1[J]. Petroleum Drilling Techiques, 1999, 27(2): 35–37. doi: 10.3969/j.issn.1001-0890.1999.02.013
    [8]
    李翔,李伟,侯承勋. 塔深2井破碎性地层钻井技术难点及对策[J]. 西部探矿工程, 2013, 25(12): 35–36. doi: 10.3969/j.issn.1004-5716.2013.12.011

    LI Xiang, LI Wei, HOU Chengxun. Drilling technology difficulties and countermeasures in fractured formation in Well Tashen 2[J]. West-China Exploration Engineering, 2013, 25(12): 35–36. doi: 10.3969/j.issn.1004-5716.2013.12.011
    [9]
    金军斌. 塔里木盆地顺北地区长裸眼钻井液技术[J]. 探矿工程(岩土钻掘工程), 2017, 44(4): 5–9.

    JIN Junbin. Drilling fluid technology of long open hole section in Shunbei Area of Tarim Basin[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2017, 44(4): 5–9.
    [10]
    PATEL N, PENKAR S, BLYTH M. Managing drilling risk using an integrated approach to real-time pore pressure prediction[R]. SPE 192692, 2018.
    [11]
    PAUL F, BRUNO L A, DOSUNMU A, et al. The effect of wellbore stability in naturally fractured reservoirs[R]. SPE 178267, 2015.
  • Related Articles

    [1]LIU Xianghua, YU Yang, LIU Jingtao. Status Quo and Development Suggestions of Key Drilling Technologies for Extra-Deep Wells in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2024, 52(2): 72-77. DOI: 10.11911/syztjs.2024028
    [2]DING Shidong, PANG Wei, ZHOU Jun, YANG dekai, HE Tong. Staged Completion Technology for Ultra-Deep Wells in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2024, 52(2): 66-71. DOI: 10.11911/syztjs.2024046
    [3]HU Wenge. Progress and the Way Forward of Key Engineering Technologies for “Deep Underground Engineering” in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2024, 52(2): 58-65. DOI: 10.11911/syztjs.2024027
    [4]LI Fan, LI Daqi, JIN Junbin, ZHANG Dujie, FANG Junwei, WANG Weiji. Drilling Fluid Technology for Wellbore Stability of the Diabase Formation in Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 61-67. DOI: 10.11911/syztjs.2022041
    [5]YANG Hongqi, SUN Lianhuan, AO Zhuqing, SANG Laiyu, YANG Guangguo, GAO Yuan. Anti-Leakage Cementing Technology for the Long Well Section below Technical Casing of Ultra-Deep Wells in the No.1 Area of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(6): 33-39. DOI: 10.11911/syztjs.2020110
    [6]LI Xinyong, LI Chunyue, ZHAO Bing, FANG Haoqing, HUANG Yanfei, HU Wenting. Acidizing Technology for Deep Penetration in Main Fault Zone of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 82-87. DOI: 10.11911/syztjs.2020014
    [7]ZHAI Kejun, YU Yang, LIU Jingtao, BAI Binzhen. Ultra-Deep Well Drilling Technology in the Igneous Invasion Coverage Area of the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 1-5. DOI: 10.11911/syztjs.2020004
    [8]JIANG Tingxue, ZHOU Jun, JIA Wenfeng, ZHOU Linbo. Deep Penetration Acid-Fracturing Technology for Ultra-Deep Carbonate Oil & Gas Reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140-147. DOI: 10.11911/syztjs.2019058
    [9]LIN Yongxue, WANG Weiji, JIN Junbin. Key Drilling Fluid Technology in the Ultra Deep Section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113-120. DOI: 10.11911/syztjs.2019068
    [10]LI Zhiyong, LI Hongfei, ZHANG Lixin, WEI Huoyun, LI Yan. Development and Field Applications of a New Anti-Sloughing Drilling Fluid System in Daniudi Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(3): 39-43. DOI: 10.11911/syztjs.201603007
  • Cited by

    Periodical cited type(26)

    1. 刘雄伟,范胜,管金田,贺垠博. 顺北地区破碎性碳酸盐岩地层钻井液井壁稳定技术. 钻井液与完井液. 2025(01): 51-57 .
    2. 卢运虎,张樱曦,金衍,周波. 考虑钻井液封堵效应的破碎性地层井壁坍塌模型. 岩石力学与工程学报. 2025(S1): 10-20 .
    3. 史配铭,刘召友,荣芳,武宏超,米博超,念富龙. 超深探井荔参1井钻井关键技术. 石油工业技术监督. 2024(02): 50-55 .
    4. 李凡,李大奇,汤志川,高伟. 破碎地层护壁防塌剂研制及性能评价. 精细石油化工. 2024(02): 10-14 .
    5. 胡文革. 顺北油气田“深地工程”关键工程技术进展及发展方向. 石油钻探技术. 2024(02): 58-65 . 本站查看
    6. 杨玉贵,蔡文军,幸雪松,邢希金,林海. 渤中区块破碎性地层井壁失稳机理及对策. 科学技术与工程. 2023(22): 9476-9483 .
    7. 王中华. 国内钻井液技术现状与发展建议. 石油钻探技术. 2023(04): 114-123 . 本站查看
    8. 刘锋报,罗霄,晏智航,张顺从,孙爱生,董樱花. 强封堵水基钻井液在塔里木油田的应用. 钻采工艺. 2023(04): 125-130 .
    9. 马永生,蔡勋育,云露,李宗杰,李慧莉,邓尚,赵培荣. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发. 2022(01): 1-17 .
    10. MA Yongsheng,CAI Xunyu,YUN Lu,LI Zongjie,LI Huili,DENG Shang,ZHAO Peirong. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China. Petroleum Exploration and Development. 2022(01): 1-20 .
    11. 张亚云,李大奇,高书阳,林永学,曾义金. 顺北油气田奥陶系破碎性地层井壁失稳影响因素分析. 断块油气田. 2022(02): 256-260 .
    12. 张锐尧,李军,柳贡慧,郝希宁,何玉发,周云健,王宁. 基于空心球破碎概率的双梯度钻井井筒压力预测. 断块油气田. 2022(02): 278-284 .
    13. 赵宁,尹飞,韩梦天,贾利春,廖智海,史彪彬. 基于相场法的井壁微裂缝扩展规律及坍塌机理研究. 钻采工艺. 2022(02): 8-14 .
    14. 王伟吉,李大奇,金军斌,徐江,张杜杰. 顺北油气田破碎性地层井壁稳定技术难题与对策. 科学技术与工程. 2022(13): 5205-5212 .
    15. 喻化民,薛莉,吴红玲,李海彪,冯丹,杨冀平,鲁娜. 满深区块深井强封堵钻井液技术. 钻井液与完井液. 2022(02): 171-179 .
    16. 张冬明. 松辽盆地中上部水敏性地层高密度油基钻井液研究. 西部探矿工程. 2022(07): 83-87 .
    17. 李科,赵怀珍,李秀灵,周飞. 抗高温高性能水基钻井液及其在顺北801X井的应用. 钻井液与完井液. 2022(03): 279-284 .
    18. 滕春鸣,甄剑武,罗会义,蒋思臣. 一种强吸附疏水改性纳米SiO_2封堵剂. 钻井液与完井液. 2022(03): 307-312 .
    19. 朱金智,杨学文,刘洪涛,杨成新,张绍俊,罗春芝. 塔河南岸跃满区块三叠系防塌钻井液研究与应用. 钻井液与完井液. 2022(03): 319-326 .
    20. 刘湘华,刘彪,杜欢,王沫. 顺北油气田断裂带超深水平井优快钻井技术. 石油钻探技术. 2022(04): 11-17 . 本站查看
    21. 胡清富,刘春来,牟少敏,李增乐,司小东. 伊拉克东巴油田Tanuma组泥页岩高效防塌钻井液技术. 石油钻探技术. 2022(04): 76-82 . 本站查看
    22. 孔勇. 地层环境响应封堵材料研究与应用. 钻井液与完井液. 2022(06): 677-684 .
    23. 吴雄军,林永学,王显光,刘金华,李大奇. 顺北5-7井超深层奥陶系地层油基钻井液技术. 长江大学学报(自然科学版). 2021(01): 100-106 .
    24. 孔勇. 温敏变形封堵剂合成研究与应用. 钻井液与完井液. 2021(06): 677-683 .
    25. 金军斌,欧彪,张杜杰,王希勇,李大奇,王逸. 深部裂缝性碳酸盐岩储层井壁稳定技术研究现状及展望. 长江大学学报(自然科学版). 2021(06): 47-54 .
    26. 吴雄军,林永学,宋碧涛,金军斌,董晓强. 顺北油气田奥陶系破碎性地层油基钻井液技术. 钻井液与完井液. 2020(06): 701-708 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (1722) PDF downloads (168) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return