Citation: | Susan Smith Nash. A brief look at new techniques and technologies for drilling and completing in the United States and developing suggestions [J]. Petroleum Drilling Techniques,2023, 51(4):192-197. DOI: 10.11911/syztjs.2023032 |
Technological developments that specifically address automation, compliance with environmental regulations, and hazard avoidance have accelerated more quickly than other drilling and completion technologies in the United States. This brief article provides a review of areas experiencing some of the most dramatic advances, while describing the need and addressing the solutions as they are now, and how they can be developed in the future. One aspect that all the new technologies have in common is an enhanced use of data analytics and in many cases, cloud-based solutions. A challenge that all have is a need to be able to quickly accommodate rapidly evolving requirements for emissions detection, hazard monitoring, and a reduced carbon footprint. Many solutions to the challenges require the ability to repurpose existing databases and use them for new purposes.
[1] |
JIANG T X, DING S D, ZHOU Jun, et al. Research and field application of a deep penetrating high-conductivity acid fracturing technology in ultra-deep carbonate reservoir[R]. ARMA-2020-1801, 2020.
|
[2] |
HEINTZELMAN L, WILLERTH M, ELHAJ N, et al. Field validation of an automated geosteering algorithm in the haynesville shale[R]. SPE 208697, 2022.
|
[3] |
MAUS S, GEE T, MITKUS A M, et al. Automated geosteering with fault detection and multi-solution tracking[R]. SPE 199660, 2020.
|
[4] |
MUHAMMAD SHAFIQ S A, SYED MUHAMAD S, SYLVIA F, et al. New conical diamond element bit technology coupled with FEA-based modeling for bit selection demonstrates high durability and improved ROP in compact carbonate formation in deep water[R]. IPTC-20202-MS, 2020.
|
[5] |
VAN PHAM V, KALANTARI DAHAGHI A, NEGAHBAN S, et al. Intelligent fracture diagnostic procedure using smart microchip proppants data[R]. SPE 208195, 2021.
|
[6] |
RICARD L P, TERTYSHNIKOV K, PEVZNER R, et al. Downhole surveillance during the well lifetime using distributed temperature sensing[R]. SPE 202224, 2020.
|
[7] |
CHAMUSCA MACHADO R, RIZZI J, XAVIER C, et al. Development of drill pipes failure prediction models and operational management system using real-time data analytics and Ai[R]. SPE 209858, 2022.
|
[8] |
WILLIAMS W C, TAYLOR C E, ALMEIDA M A, et al. Distributed sensing and real time visualization of gas kick dynamics in a full-scale wellbore[R]. SPE 201539, 2020.
|
[9] |
XUAN Yaowei, LI Shiqiang, LI Hanping, et al. Experimental study about vibration interference of dual pipe systems[R]. ISOPE-I-18-453, 2018.
|
[10] |
ALBAHRANI H, ALQAM M, MAKRAMI A. De-risking cavings by coupling spalling rate and numerical geomechanics modeling[R]. SPE 211737, 2022.
|
[11] |
POST R, PIHL R, BROWN A, et al. Practical aspects of utilizing UAS to characterize and manage rockfall and other geohazards along Colorado highways[R]. ARMA-2020-2148, 2020.
|
[12] |
RAMASAMY J, ARFAJ M K. Sustainable and green drilling fluid additives development[R]. OTC-31350-MS, 2022.
|
[13] |
AMANULLAH M, RAMASAMY J, ALOUHALI R. HSE-friendly lubricants to safeguard environment and enhance operational excellence[R]. IPTC-19926-MS, 2020.
|
[14] |
CHU Jian, ASHOK P, WITT-DOERRING Y, et al. Drill bit failure forensics using 2D bit images captured at the rig site[J]. SPE Journal, 2022, 27(6): 3351–3362. doi: 10.2118/204124-PA
|
[15] |
LU B T. Corrosivity assessment of brackish water[R]. NACE-2015-5577, 2015.
|
[16] |
STEWART D R. Brackish water as a new water resource for energy development[R]. SPE 169486, 2014.
|
[17] |
THOMSON B M, TANDUKAR S, SHAHI A, et al. Mineral recovery enhanced desalination (MRED) process: An innovative technology for desalinating hard brackish water[J]. Desalination, 2020, 496: 114761. doi: 10.1016/j.desal.2020.114761
|
[18] |
ZIEMKIEWICZ P F. The Marcellus Shale Energy and Environmental Laboratory (MSEEL): Water and solid waste findings-year one[R]. URTEC-2669914-MS, 2017.
|
[19] |
MUELLER D. Identification and evaluation of brackish groundwater resources and alternate water sources for hydraulic fracturing operations[R]. SPE 163769, 2013.
|
1. |
张欣涛. 降低油基钻井液成本的技术措施. 采油工程. 2025(01): 57-61+86 .
![]() | |
2. |
周克明,袁小玲,刘婷芝,余华洁,缪海燕,张琳羚,王艳,何家欢,肖红林,宋林珂,张容. 四川盆地公山庙油田中侏罗统沙溪庙组一段致密油藏流体渗流特征. 天然气勘探与开发. 2024(01): 73-82 .
![]() | |
3. |
王程伟,苏玉亮,王文东,李蕾,郝永卯. CO_2-C_2H_6吞吐提高致密油藏采收率实验研究. 油气地质与采收率. 2024(01): 111-118 .
![]() | |
4. |
许宁,满安静,徐萍,张帅迁,许琬晨,葛艳阳. 非常规油藏补能提采开发方式研究进展及路径优选. 中外能源. 2023(08): 38-46 .
![]() | |
5. |
刘航铭,胡鑫雨,易先中,万继方,贺育贤,陈霖,周元华. 致密储层聚簇孔定向开采方法及渗流分析. 断块油气田. 2023(04): 609-615 .
![]() | |
6. |
易先中,乔少锋,刘航铭,贺东旭,姚秀田,陈辉. 致密储层水平分支井聚簇孔的产注性能研究. 特种油气藏. 2023(05): 77-83 .
![]() | |
7. |
邸士莹,程时清,白文鹏,尚儒源,潘有军,史文洋. 裂缝性致密油藏注水吞吐转不稳定水驱开发模拟. 石油钻探技术. 2022(01): 89-96 .
![]() | |
8. |
余海棠,邓雄伟,刘艳梅,何亚斌. 致密油储层渗吸驱油用纳米流体研究. 断块油气田. 2022(05): 604-608 .
![]() | |
9. |
郭鸣黎,陈艳,郑振恒,李军,喻莲,刘丽琼. 致密油藏可采储量概率快速评估方法——以红河油田长8油藏为例. 石油实验地质. 2021(01): 154-160 .
![]() | |
10. |
陈作,刘红磊,李英杰,沈子齐,许国庆. 国内外页岩油储层改造技术现状及发展建议. 石油钻探技术. 2021(04): 1-7 .
![]() | |
11. |
向洪,隋阳,王静,王波,杨雄. 胜北深层致密砂岩气藏水平井细分切割体积压裂技术. 石油钻采工艺. 2021(03): 368-373 .
![]() | |
12. |
周济民,张海晨,王沫然. 基于物理经验模型约束的机器学习方法在页岩油产量预测中的应用. 应用数学和力学. 2021(09): 881-890 .
![]() | |
13. |
王振宇,王磊,汪杰,梁晨,聂法健. 泾河长8裂缝性致密油藏渗吸吞吐可行性实验研究. 西安石油大学学报(自然科学版). 2021(06): 50-55 .
![]() | |
14. |
柳伟荣,倪华峰,王学枫,石仲元,谭学斌,王清臣. 长庆油田陇东地区页岩油超长水平段水平井钻井技术. 石油钻探技术. 2020(01): 9-14 .
![]() | |
15. |
焦晨雪,王民,高阳,黄文彪,卢双舫,关莹,钱根葆,覃建华,周能武,田伟超,汪志璇,徐建鹏. 准噶尔盆地玛湖凹陷风南4井区百口泉组砾岩致密油藏地质“甜点”测井评价. 中南大学学报(自然科学版). 2020(01): 112-125 .
![]() | |
16. |
闫林,陈福利,王志平,阎逸群,曹瑾健,王坤琪. 我国页岩油有效开发面临的挑战及关键技术研究. 石油钻探技术. 2020(03): 63-69 .
![]() | |
17. |
马永生,黎茂稳,蔡勋育,徐旭辉,胡东风,曲寿利,李根生,何登发,肖贤明,曾义金,饶莹. 中国海相深层油气富集机理与勘探开发:研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质. 2020(04): 655-672+683 .
![]() | |
18. |
张烈辉,刘沙,雍锐,李博,赵玉龙. 基于EDFM的致密油藏分段压裂水平井数值模拟. 西南石油大学学报(自然科学版). 2019(04): 1-11 .
![]() | |
19. |
向洪,王志平,谌勇,刘智,窦睿. 三塘湖盆地致密油加密井体积压裂技术研究与实践. 中国石油勘探. 2019(02): 260-266 .
![]() | |
20. |
向洪. 马56区块致密油藏“缝控”体积压裂技术. 油气井测试. 2018(04): 49-54 .
![]() | |
21. |
苏煜彬,林冠宇,韩悦. 表面活性剂对致密砂岩储层自发渗吸驱油的影响. 断块油气田. 2017(05): 691-694 .
![]() | |
22. |
胡罡,田选华,陆正元,刘全稳. 致密油储层渗透率上限研究. 广东石油化工学院学报. 2017(01): 10-12 .
![]() | |
23. |
常雷. 长垣、齐家地区致密油水平井钻井提速配套技术. 石油地质与工程. 2017(06): 98-100+104+128-129 .
![]() | |
24. |
何祖清,梁承春,彭汉修,朱明,何同. 鄂尔多斯盆地南部致密油藏水平井智能分采技术研究与试验. 石油钻探技术. 2017(03): 88-94 .
![]() | |
25. |
吴爽. 辽河油田无固相强抑制水基钻井液技术. 石油钻探技术. 2017(06): 42-48 .
![]() | |
26. |
魏航信,徐建宁,赵亚杰,黄华,席文奎. 特低渗透及致密油藏低产井有杆泵采油参数优化方法. 石油钻探技术. 2017(06): 83-87 .
![]() | |
27. |
杨远,何幼斌,罗进雄. 基于复合数学模型的致密油地质工程一体化开采理念与路线. 中外能源. 2017(07): 27-35 .
![]() | |
28. |
司庆红,司马献章,张超,孙卫志,王善博. 伊川凹陷谭庄组储层特征与致密油成藏条件. 特种油气藏. 2017(05): 42-47 .
![]() | |
29. |
向洪. 三塘湖盆地马56区块致密油重复压裂实践. 特种油气藏. 2017(06): 157-160 .
![]() | |
30. |
曹翔宇,丁文龙,尹帅. 利用孔隙纵横比定量判断孔隙型海相致密油地层岩性变化点的方法. 断块油气田. 2016(06): 731-737 .
![]() | |
31. |
冯立,蒋国斌,于浩波,冯陶然. 致密油采油工程成本优化的设计方法与实践. 非常规油气. 2016(03): 63-67 .
![]() | |
32. |
尹帅,丁文龙,李昂,赵金利,单钰铭. 裂缝对致密碎屑岩储层弹性影响的数值分析. 石油钻探技术. 2016(02): 112-118 .
![]() | |
33. |
侯杰,刘永贵,李海. 高性能水基钻井液在大庆油田致密油藏水平井中的应用. 石油钻探技术. 2015(04): 59-65 .
![]() | |
34. |
李阳. 中国石化致密油藏开发面临的机遇与挑战. 石油钻探技术. 2015(05): 1-6 .
![]() |