SONG Xiaojian, ZHENG Bangxian, TAN Yongzhi, HUANG Bingya, MA Hongyan, DONG Chenxi. Dynamic Measurement Method of Near-Bit Borehole Trajectory Parameters Based on Data Fusion[J]. Petroleum Drilling Techniques, 2022, 50(1): 38-44. DOI: 10.11911/syztjs.2021054
Citation: SONG Xiaojian, ZHENG Bangxian, TAN Yongzhi, HUANG Bingya, MA Hongyan, DONG Chenxi. Dynamic Measurement Method of Near-Bit Borehole Trajectory Parameters Based on Data Fusion[J]. Petroleum Drilling Techniques, 2022, 50(1): 38-44. DOI: 10.11911/syztjs.2021054

Dynamic Measurement Method of Near-Bit Borehole Trajectory Parameters Based on Data Fusion

More Information
  • Received Date: March 27, 2021
  • Revised Date: November 14, 2021
  • Available Online: January 21, 2022
  • When borehole trajectory parameters are measured while drilling by a measurement system of triaxial accelerometers, fluxgates, and rate gyros, the results show huge deviations due to the influence of factors such as rotation, vibration, and magnetic interference, etc. As a result, the requirements of geosteering while drilling cannot be met. Considering this, a quaternion-based measurement model of borehole trajectory parameters was built for the above measurement system. In addition, according to state equations and measurement equations, three strap-down Kalman filters and a correction system for magnetic interference were applied to filter and correct accelerometer and fluxgate signals. In this way, a dynamic measurement method of near-bit borehole trajectory parameters based on data fusion was developed. The simulations in the laboratory and on-site drilling showed that the measurement precision of borehole trajectory parameters was significantly improved by using the proposed method. The research indicates that the proposed method can eliminate the influence of rotation, vibration, and magnetic interference on the results of the measurement system of triaxial accelerometers, fluxgates, and rate gyros while drilling to upgrade the measurement precision for geosteering, thus meeting the requirements of geosteering while drilling.
  • [1]
    杨全进,徐宝昌,左信,等. 旋转导向钻具姿态的无迹卡尔曼滤波方法[J]. 石油学报,2013,34(4):1168–1175.

    YANG Quanjin, XU Baochang, ZUO Xin, et al. An unscented Kalman filter method for attitude measurement of rotary steerable drilling assembly[J]. Acta Petrolei Sinica, 2013, 34(4): 1168–1175.
    [2]
    高怡,程为彬,汪跃龙. 近钻头钻具多源动态姿态组合测量方法[J]. 中国惯性技术学报,2017,25(2):146–150.

    GAO Yi, CHENG Weibin, WANG Yuelong. Multi-source dynamic attitude combination measurement for near-bit drilling tool[J]. Journal of Chinese Inertial Technology, 2017, 25(2): 146–150.
    [3]
    XUE Qilong, WANG Ruihe, SUN Feng. Continuous measurement while drilling utilizing strap down multi model surveying system[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(3): 650–657. doi: 10.1109/TIM.2013.2282412
    [4]
    ZHEN Ziyang, XING Dongjing, GAO Chen. Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm[J]. Aerospace Science and Technology, 2018, 76: 402–411. doi: 10.1016/j.ast.2018.01.035
    [5]
    徐宝昌,杨全进,蒋海旭. 旋转导向系统有色噪声的改进无迹卡尔曼滤波方法[J]. 中国石油大学学报(自然科学版),2015,39(2):157–163.

    XU Baochang, YANG Quanjin, JIANG Haixu. Improved unscented Kalman filtering method for colored noises of rotary steerable system[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(2): 157–163.
    [6]
    COLUCCIA A, RICCIATO F. On ML estimation for automatic RSS-based indoor localization: IEEE 5th International Symposium on Wireless Pervasive Computing, Modena, May 5-7, 2010[C].
    [7]
    OUYANG R W, WONG A K, LEA C, et al. Received signal strength-based wire-less localization via semidefinite programming: Proceedings of the Global Communications Conference, Honolulu, November 30–December 4, 2009[C].
    [8]
    高怡,汪跃龙,程为彬. 抗差自适应滤波的导向钻具动态姿态测量方法[J]. 中国惯性技术学报,2016,24(4):437–442.

    GAO Yi, WANG Yuelong, CHENG Weibin. Robust adaptive filtering method for dynamic attitude measurement of steering drilling[J]. Journal of Chinese Inertial Technology, 2016, 24(4): 437–442.
    [9]
    鲁港,佟长海,夏泊洢,等. 空间圆弧轨迹的矢量描述技术[J]. 石油学报,2014,35(4):759–764. doi: 10.7623/syxb201404019

    LU Gang, TONG Changhai, XIA Boyi, et al. Vector description of spatial -arc well bore trajectory[J]. Acta Petrolei Sinica, 2014, 35(4): 759–764. doi: 10.7623/syxb201404019
    [10]
    路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术,2019,47(3):148–155. doi: 10.11911/syztjs.2019060

    LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060
    [11]
    陆自清. 基于卡尔曼滤波的动态地质模型导向方法[J]. 石油钻探技术,2021,49(1):113–120.

    LU Ziqing. Geosteering methods of a dynamic geological model based on Kalman filter[J]. Petroleum Drilling Techniques, 2021, 49(1): 113–120.
    [12]
    WANG Ruihe, XUE Qilong, SUN Feng. Study on lateral vibration of rotary steerable drilling system[J]. Journal of Vibroengineering, 2014, 16(6): 2702–2711.
    [13]
    XUE Qilong, HENRY L, WANG Ruihe, et al. Continuous real-time measurement of drilling trajectory with new state space models of Kalman filter[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(1): 144–154. doi: 10.1109/TIM.2015.2479096
    [14]
    SHAO Hujie, ZHANG Xiaoping, WANG Zhi. Efficient closed-form algorithms for AOA based self-localization of sensor nodes using auxiliary variables[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2580–2594. doi: 10.1109/TSP.2014.2314064
    [15]
    YACLAN Y, BICAN B. Empirical mode decomposition based denoising method with support vector regression for time series prediction A case study for electricity load forecasting[J]. Measurement, 2017, 103: 52–61. doi: 10.1016/j.measurement.2017.02.007
    [16]
    许昊东,黄根炉,张然,等. 磁力随钻测量磁干扰校正方法研究[J]. 石油钻探技术,2014,42(2):102–106.

    XU Haodong, HUANG Genlu, ZHANG Ran, et al. Method of magnetic interference correction in survey with magnetic MWD[J]. Petroleum Drilling Techniques, 2014, 42(2): 102–106.
  • Related Articles

    [1]HE Chengjiang, JIANG Yingbing, WEN Huan, LI Xiang. Key Technologies for High-Efficiency One-Well Multi-Control Development of Fractured-Vuggy Reservoirs in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(4): 37-44. DOI: 10.11911/syztjs.2022077
    [2]LIU Liqing, LIU Peiliang, JIANG Lin. Quantitative Water Injection Technology for Cavernous Fractured Karst Carbonate Reservoirs in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 104-107. DOI: 10.11911/syztjs.2019122
    [3]ZHANG Wei, HAI Gang, ZHANG Ying. Gas-Water Composite Flooding Technology for Fractured and Vuggy Carbonate Reservoirs in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 61-65. DOI: 10.11911/syztjs.2019124
    [4]FANG Haoqing, ZHAO Bing, WANG Wenzhi, ZHOU Zhou. Simulation Study on the Range of Diversion in Targeted Fracturing of Prefabricated Fractures in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 97-103. DOI: 10.11911/syztjs.2019048
    [5]ZHANG Ping, JIA Xiaobin, BAI Binzhen, SONG Hai. Progress and Outlook on Drilling and Completion Technologies in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(2): 1-8. DOI: 10.11911/syztjs.2019051
    [6]PENG Zhenhua, ZHANG Yuan, DING Wen, REN Xianghai, LI Xiaojun, XIONG Wei. Artificial Lifting Technology Applied in Ultra-Deep Super-Heavy Oil Reservoirs of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(4): 84-90. DOI: 10.11911/syztjs.2018094
    [7]WANG Yang, YUAN Qingyun, ZHAO Bing, FANG Yuyan, QIN Fei. Experiment Research on the Effect of CO2 on Acid-Rock Reactions in Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2017, 45(1): 78-82. DOI: 10.11911/syztjs.201701014
    [8]ZHANG Xiong, GENG Yudi, JIAO Kebo, HOU Fan, LUO Pandeng. The Technology of Multi-Stage Acid Fracturing in Horizontal Well for Carbonate Reservoir by Temporary Plugging Ways in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(4): 82-87. DOI: 10.11911/syztjs.201604015
    [9]HUANG Weian, NIU Xiao, SHEN Qingyun, ZHOU Wei, YANG Shichao, QIU Zhengsong. Anti-Sloughing Drilling Fluid Technology for Deep Sidetracking Wells in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(2): 51-57. DOI: 10.11911/syztjs.201602009
    [10]Li Guangguo, Suo Zhongwei, Wang Jinrong, Zhou Yucang, Gao Changbin. Improve ROP with Hydraulic Percussion Hammer and PDC Bit in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(5): 71-75. DOI: 10.3969/j.issn.1001-0890.2013.05.014
  • Cited by

    Periodical cited type(17)

    1. 罗攀登,张士诚,张雄,牟建业,郑海钱,卢盼盼. 高温碳酸盐岩储层酸压固态延迟酸在裂缝中作用规律数值模拟. 大庆石油地质与开发. 2025(02): 79-88 .
    2. 卢澍韬,马文海,齐向生,张永,杨春城. 合川气田茅口组碳酸盐岩深度酸化压裂技术探索. 采油工程. 2024(02): 22-28+79 .
    3. 屈兴华,提云,崔海军,王晨,杨小涛. 一种多元有机自生酸的制备及性能评价. 当代化工. 2023(08): 1895-1898+1953 .
    4. 付鹏,沈亮. 适用于高温储层自生酸性能评价及应用. 内蒙古石油化工. 2022(07): 108-111+124 .
    5. 李小刚,秦杨,朱静怡,刘紫微,金心岫,高晨轩,靳文博,杜博迪. 自生酸酸液体系研究进展及展望. 特种油气藏. 2022(06): 1-10 .
    6. 李永寿,安娜,方裕燕,罗攀登,余文旺,孟祥光. 长时耐高温自生酸研制及其性质研究. 化学研究与应用. 2021(09): 1834-1837 .
    7. 郝伟,伊向艺,黄文强,吴霞,车星祥. 自生酸酸液体系评价实验研究. 石油化工应用. 2020(04): 96-101 .
    8. 曹广胜,李哲,隋雨,白玉杰,王大業. S区碳酸盐岩耐高温酸压酸液体系优选及性能评价. 石油化工高等学校学报. 2020(05): 48-53 .
    9. 蒋廷学,周珺,贾文峰,周林波. 顺北油气田超深碳酸盐岩储层深穿透酸压技术. 石油钻探技术. 2019(03): 140-147 . 本站查看
    10. 吴巍巍,杜俊杰,高义评,罗雄. 塔河油田碳酸盐岩储层酸压技术进展研究. 内蒙古煤炭经济. 2019(18): 183 .
    11. 文果,谢新秋,武月荣. 深层碳酸盐岩水平井改造技术现状及进展. 石油化工应用. 2018(02): 1-4 .
    12. 王磊,薛蓉,赵倩云,范华波,郭钢. 油气藏酸液体系研究进展. 应用化工. 2018(03): 548-553 .
    13. 王绵,陈军,赵哲军. 自生酸除垢破乳净化剂工艺性能及实验评价. 断块油气田. 2017(06): 844-846 .
    14. 王洋,袁清芸,赵兵,方裕燕,秦飞. 二氧化碳对塔河油田裂缝性储层酸岩反应的影响研究. 石油钻探技术. 2017(01): 78-82 . 本站查看
    15. 刘建坤,蒋廷学,周林波,周珺,吴峙颖,吴沁轩. 碳酸盐岩储层多级交替酸压技术研究. 石油钻探技术. 2017(01): 104-111 . 本站查看
    16. 李晓益,艾爽,程光明,张杰,吴俊霞. 鱼骨刺柔性管在碳酸盐岩缝洞型油藏应用的数值模拟研究. 石油钻探技术. 2017(03): 102-106 . 本站查看
    17. 周林波. 高导流自支撑酸化压裂室内实验研究. 特种油气藏. 2017(04): 152-155 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (406) PDF downloads (109) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return