LI Kaikai, AN Ran, YUE Pandong, CHEN Shidong, YANG Kailan, WEI Wen. Large-Scale Energy Storage Volumetric Fracturing Technology for Horizontal Wells in the An 83 Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(4): 125-129. DOI: 10.11911/syztjs.2021026
Citation: LI Kaikai, AN Ran, YUE Pandong, CHEN Shidong, YANG Kailan, WEI Wen. Large-Scale Energy Storage Volumetric Fracturing Technology for Horizontal Wells in the An 83 Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(4): 125-129. DOI: 10.11911/syztjs.2021026

Large-Scale Energy Storage Volumetric Fracturing Technology for Horizontal Wells in the An 83 Shale Oil Reservoir

More Information
  • Received Date: February 09, 2021
  • Revised Date: June 29, 2021
  • Available Online: July 15, 2021
  • Early single-well stimulation attempts in the An83 shale oil reservoir failed to achieve the desired results due to its tight formation and poor energy replenishing effect. According to the previous attempts at energy storage by water injection and refracturing experiments, formation energy was replenished through water injection and the fracturing tools were upgraded. On this basis, extreme clustered perforation, differential reservoir stimulation and multistage dynamic temporary plugging were studied to improve the complexity of fractures, and the well shut-in time was optimized. Finally, the large-scale energy storage volumetric fracturing technology was formed. Field testing results showed that the production of horizontal wells was significantly increased by using the new technology, and the daily oil production of a single test well achieved up to 7 times that of adjacent wells. After 10 months of production, the cumulative oil increment of a single well reached 2 010 tons, with good economic benefits. The technology can replenish the energy of reservoir and effectively stimulate the reservoir, providing a reference for the development of other similar reservoirs.
  • [1]
    李忠兴,屈雪峰,刘万涛,等. 鄂尔多斯盆地长7段致密油合理开发方式探讨[J]. 石油勘探与开发,2015,42(2):217–221. doi: 10.11698/PED.2015.02.11

    LI Zhongxing, QU Xuefeng, LIU Wantao, et al. Development modes of Triassic Yanchang Formation Chang7 Member tight oil in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 217–221. doi: 10.11698/PED.2015.02.11
    [2]
    胥云,雷群,陈铭,等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发,2018,45(5):874–887.

    XU Yun, LEI Qun, CHEN Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5): 874–887.
    [3]
    张春辉. 连续油管结合双封单卡压裂技术应用[J]. 石油矿场机械,2014,43 (5):60–62. doi: 10.3969/j.issn.1001-3482.2014.05.017

    ZHANG Chunhui. Application of coiled tubing frac technique using double-sealing and single-stick[J]. Oil Field Equipment, 2014, 43 (5): 60–62. doi: 10.3969/j.issn.1001-3482.2014.05.017
    [4]
    张红妮,陈井亭. 低渗透油田蓄能整体压裂技术研究:以吉林油田外围井区为例[J]. 非常规油气,2015,2(5):55–60. doi: 10.3969/j.issn.2095-8471.2015.05.010

    ZHANG Hongni, CHEN Jingting. Insights into energy storage bulk fracturing technology for low-permeability oilfields: a case study of peripheral wellblock of Jilin Oilfield[J]. Unconventional Oil & Gas, 2015, 2(5): 55–60. doi: 10.3969/j.issn.2095-8471.2015.05.010
    [5]
    何海波. 致密油水平井缝网增能重复压裂技术实践[J]. 特种油气藏,2018,25(4):170–174. doi: 10.3969/j.issn.1006-6535.2018.04.034

    HE Haibo. Practice of re-fracturing with network energization for horizontal well in tight oil reservoir[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 170–174. doi: 10.3969/j.issn.1006-6535.2018.04.034
    [6]
    吴顺林,刘汉斌,李宪文,等. 鄂尔多斯盆地致密油水平井细分切割缝控压裂试验与应用[J]. 钻采工艺,2020,43(3):53–55. doi: 10.3969/J.ISSN.1006-768X.2020.03.16

    WU Shunlin, LIU Hanbin, LI Xianwen, et al. Test and application of subdivision fracture control fracturing for tight oil horizontal wells in Ordos Basin[J]. Drilling & Production Technology, 2020, 43(3): 53–55. doi: 10.3969/J.ISSN.1006-768X.2020.03.16
    [7]
    闫林,冉启全,高阳,等. 陆相致密油藏差异化含油特征与控制因素[J]. 西南石油大学学报(自然科学版),2017,39(6):45–54.

    YAN Lin, RAN Qiquan, GAO Yang, et al. The differentiation oil-bearing characteristic and control factors of continental tight oil[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(6): 45–54.
    [8]
    闫林,袁大伟,陈福利,等. 陆相致密油藏差异化含油控制因素及分布模式[J]. 新疆石油地质,2019,40(3):262–268.

    YAN Lin, YUAN Dawei, CHEN Fuli, et al. A study on differentiated oil-bearing controlling factors and distribution patterns of continental tight oil reservoir[J]. Xinjiang Petroleum Geology, 2019, 40(3): 262–268.
    [9]
    苏良银,白晓虎,陆红军,等. 长庆超低渗透油藏低产水平井重复改造技术研究及应用[J]. 石油钻采工艺,2017,39(4):521–527.

    SU Liangyin, BAI Xiaohu, LU Hongjun, et al. Study on repeated stimulation technology and its application to in low-yield horizontal wells in ultra low permeability oil reservoirs, Changqing Oilfeld[J]. Oil Drilling & Production Technology, 2017, 39(4): 521–527.
    [10]
    陶亮,郭建春,李凌铎,等. 致密油藏水平井重复压裂多级选井方法研究[J]. 特种油气藏,2018,25(4):67–71. doi: 10.3969/j.issn.1006-6535.2018.04.013

    TAO Liang, GUO Jianchun, LI Lingduo, et al. Multi-stage well selection for refracturing operations in horizontal wells for tight oil reservoir development[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 67–71. doi: 10.3969/j.issn.1006-6535.2018.04.013
    [11]
    曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. doi: 10.11911/syztjs.2020073

    ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84. doi: 10.11911/syztjs.2020073
    [12]
    郭建春,李杨,王世彬. 滑溜水在页岩储集层的吸附伤害及控制措施[J]. 石油勘探与开发,2018,45(2):320–325.

    GUO Jianchun, LI Yang, WANG Shibin. Adsorption damage and control measures of slick-water fracturing fluid in shale reser-voirs[J]. Petroleum Exploration and Development, 2018, 45(2): 320–325.
    [13]
    孙金声,许成元,康毅力,等. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术,2020,48(4):1–10. doi: 10.11911/syztjs.2020068

    SUN Jinsheng, XU Chengyuan, KANG Yili, et al. Research progress and development recommendations covering damage mechanisms and protection technologies for tight/shale oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1–10. doi: 10.11911/syztjs.2020068
    [14]
    樊建明,王冲,屈雪峰,等. 鄂尔多斯盆地致密油水平井注水吞吐开发实践:以延长组长7油层组为例[J]. 石油学报,2019,40(6):706 –715. doi: 10.7623/syxb201906006

    FAN Jianming, WANG Chong, QU Xuefeng, et al. Development and practice of water flooding huff–puff in tight oil horizontal well, Ordos Basin: a case study of Yanchang Formation Chang 7 oil layer[J]. Acta Petrolei Sinica, 2019, 40(6): 706 –715. doi: 10.7623/syxb201906006
  • Related Articles

    [1]YANG Kunpeng, LI Pengxiao, AO Kangwei, ZHANG Tianyi, XIA Yuanbo, HOU Wei. Ultra-Low Density and Low-Friction Cement Slurry Cementing Technologies in Long Sealing Sections of Fuman Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(6): 64-70. DOI: 10.11911/syztjs.2023060
    [2]XIE Guanbao. Establishment of Logging Evaluation Criteria for the Cementing Quality of Low-Density Cement Slurries[J]. Petroleum Drilling Techniques, 2022, 50(1): 119-126. DOI: 10.11911/syztjs.2022015
    [3]CHEN Lei, YANG Hongqi, XIAO Jingnan, ZHOU Shiming, CHU Yongtao, WEI Zhao. Ultra-Low Density Hollow Microspheres-Nitrogen Foamed Cementing Technology in Block Hangjinqi[J]. Petroleum Drilling Techniques, 2018, 46(3): 34-38. DOI: 10.11911/syztjs.2018049
    [4]YANG Haibo, CAO Chengzhang, FENG Dejie, CAO Huilian. The Development and Application of a New Low Density Cement Reducer SXJ-1[J]. Petroleum Drilling Techniques, 2017, 45(4): 59-64. DOI: 10.11911/syztjs.201704010
    [5]LI Zaoyuan, QI Ling, LIU Rui, GU Tao, SUN Jinfei. Experimental Study on the Integrity of Low-Density Cement Sheath with Hollow Microsphere[J]. Petroleum Drilling Techniques, 2017, 45(3): 42-47. DOI: 10.11911/syztjs.201703008
    [6]Bu Yuhuan, Song Wenyu, He Yingjun, Shen Zhaochao. Discussion of a Method for Evaluating Cementing Quality with Low-Density Cement Slurries[J]. Petroleum Drilling Techniques, 2015, 43(5): 49-55. DOI: 10.11911/syztjs.201505009
    [7]Yao Yong, Yin Zongguo, Jiao Jianfang, Guo Guangping, Hong Shaoqing. Cementing with Ultra-High Density Slurry in Well Guanshen-1[J]. Petroleum Drilling Techniques, 2013, 41(1): 118-122. DOI: 10.3969/j.issn.1001-0890.2013.01.023
    [8]Wang Hongchao. Application of Expandable Low-Density Slurry Plugging Technique in Well Xiangye 1[J]. Petroleum Drilling Techniques, 2012, 40(4): 43-46. DOI: 10.3969/j.issn.1001-0890.2012.04.009
    [9]Research on Low Density Cement Slurry for Cementing Marine Thief Zone[J]. Petroleum Drilling Techniques, 2011, 39(1): 56-60. DOI: 10.3969/j.issn.1001-0890.2011.01.013
  • Cited by

    Periodical cited type(16)

    1. 贾轲. 莺歌海盆地高温高压井窄压力窗口ECD精细控制应用. 石化技术. 2024(01): 178-180 .
    2. 贾轲. 南海西部窄压力窗口低渗高压地层应对方法. 石化技术. 2024(03): 109-111 .
    3. 张文彬,狄明利,曾祥聪. HZ区块强承压堵漏技术研究与应用. 广东化工. 2023(04): 61-63+28 .
    4. 邢希金,谢仁军,邱正松,李佳,高健. 井壁强化技术的研究及其在乐东区块的应用. 钻井液与完井液. 2023(01): 67-72 .
    5. 侯华丹,于雷. 基于弹性网眼体的油基钻井液堵漏体系研究与应用. 海洋石油. 2023(01): 55-58 .
    6. 何雨,孟鐾桥,郑友志,吴柄燕,赵军,李斌. 渝西区块页岩气钻井防漏堵漏技术研究. 石油工业技术监督. 2023(07): 58-62 .
    7. 孙金声,李锐,王韧,屈沅治,黄宏军. 准噶尔盆地南缘井壁失稳机理及对策研究. 西南石油大学学报(自然科学版). 2022(01): 1-12 .
    8. 王荣,袁立山,罗垚,杨旭达,吕蓓,程家麒. 暂堵剂高温封堵机理及实验评价. 石油化工高等学校学报. 2022(02): 62-67 .
    9. 陈忠华,徐海军. 自制可调式蝶阀拆解工具在高温高压井中的应用. 化学工程与装备. 2021(02): 143-144 .
    10. 李公让,于雷,刘振东,李卉,明玉广. 弹性孔网材料的堵漏性能评价及现场应用. 石油钻探技术. 2021(02): 48-53 . 本站查看
    11. 于欣,张振,郭梦扬,李磊,范劲,邓正强. 抗高温油基钻井液堵漏剂的研制与应用——以龙马溪组页岩气井W204H为例. 断块油气田. 2021(02): 168-172 .
    12. 向雄,张立权,杨洪烈,刘喜亮,易鹏昌,彭天军. XX-1-B32超低压井钻井液技术研究与应用. 长江大学学报(自然科学版). 2021(02): 49-54+88 .
    13. 郭伟,娄益伟,韩成. 测试管汇在高温高压井井控中的应用. 化学工程与装备. 2021(05): 127-128+132 .
    14. 赵洪波,单文军,朱迪斯,岳伟民,何远信. 裂缝性地层漏失机理及堵漏材料新进展. 油田化学. 2021(04): 740-746 .
    15. 方胜杰. 莺琼盆地高温高压钻井液的开发. 化学工程与装备. 2020(05): 52-54 .
    16. 郎宝山. 稠油水平井大直径封漏堵水管柱的研制与应用. 特种油气藏. 2020(03): 157-162 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return