YANG Kunpeng, LI Pengxiao, AO Kangwei, et al. Ultra-low density and low-friction cement slurry cementing technologies in long sealing sections of Fuman Oilfield [J]. Petroleum Drilling Techniques,2023, 51(6):64-70. DOI: 10.11911/syztjs.2023060
Citation: YANG Kunpeng, LI Pengxiao, AO Kangwei, et al. Ultra-low density and low-friction cement slurry cementing technologies in long sealing sections of Fuman Oilfield [J]. Petroleum Drilling Techniques,2023, 51(6):64-70. DOI: 10.11911/syztjs.2023060

Ultra-Low Density and Low-Friction Cement Slurry Cementing Technologies in Long Sealing Sections of Fuman Oilfield

More Information
  • Received Date: June 19, 2022
  • Revised Date: July 28, 2023
  • Accepted Date: July 29, 2023
  • Available Online: August 04, 2023
  • This paper aims to solve the technical problems of long open hole section, low leakage pressure, low success rate of one-time return of cement slurry of 1.35 kg/L, poor rheological property and stability of cement slurry, and the slow development of early strength in the second-opening cementing of Fuman Oilfield in the Tarim Basin. The low-friction and ultra-low density cement slurry system of 1.20 kg/L was developed based on the theory of close packing design by studying the reinforcing agent for low-density cement slurry and optimizing the pressure-resistant and light material, the low-viscosity fluid loss agent, and high-efficiency comb-type polycarboxylate drag reducer, etc. The settlement of the system was stable and lower than 0.02 kg/L, K≤0.5 Pa·sn, n≥0.8; the 24 h bottom compressive strength was larger than 7.5 MPa, which was more than 50% higher than that of the traditional low-density cement slurry system and met the requirements of performance and mechanical properties for long sealing section, high temperature and high pressure, and easy leakage well. The field application of three wells has achieved good results, with an average pass rate of 88.0%. The research and field application show that the ultra-low density and low-Friction Cement Slurry can provide support for the safe and efficient development of Fuman Oilfield.

  • [1]
    谢会文,能源,敬兵,等. 塔里木盆地寒武系—奥陶系白云岩潜山勘探新发现与勘探意义[J]. 中国石油勘探,2017,22(3):1–11. doi: 10.3969/j.issn.1672-7703.2017.03.001

    XIE Huiwen, NENG Yuan, JING Bing, et al. New discovery in exploration of Cambrian–Ordovician dolomite buried hills in Tarim Basin and its significance[J]. China Petroleum Exploration, 2017, 22(3): 1–11. doi: 10.3969/j.issn.1672-7703.2017.03.001
    [2]
    温声明, 王建忠, 王贵重, 等. 塔里木盆地火成岩发育特征及对油气成藏的影响[J]. 石油地球物理勘探, 2005, 40(增刊1): 22–39.

    WEN Shengming, WANG Jianzhong, WANG Guizhong, et al. Characteristics of igneous rock development and its influence on hydrocarbon accumulation in Tarim Basin[J]. Oil Geophysical Prospecting, 2005, 40(supplement1): 22–39.
    [3]
    何发岐,俞仁连,韩振华. 塔里木盆地塔河油田近年来勘探主要成果与下一步勘探方向[J]. 石油试验地质,2004,26(1):23–27.

    HE Faqi, YU Renlian, HAN Zhenhua. The main exploration achievements and future exploration direction of Tahe Oilfield in Tarim Basin in recent years[J]. Petroleum Geology & Experiment, 2004, 26(1): 23–27.
    [4]
    王涛,刘锋报,罗威,等. 塔里木油田防漏堵漏技术进展与发展建议[J]. 石油钻探技术,2021,49(1):28–33.

    WANG Tao, LIU Fengbao, LUO Wei, et al. The technical advance and development suggestions for leakage prevention and plugging technologies in the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 28–33.
    [5]
    吴彪. 塔里木油田火成岩地层漏失原因分析及对策[J]. 清洗世界,2019,35(1):38–40.

    WU Biao. Cause analysis and countermeasures of igneous formation leakage in Tarim Oilfield[J]. Cleaning World, 2019, 35(1): 38–40.
    [6]
    匡立新,陶谦. 渝东地区常压页岩气水平井充氮泡沫水泥浆固井技术[J]. 石油钻探技术,2022,50(3):39–45.

    KUANG Lixin, TAO Qian. Cementing technology using a nitrogen-filled foamed cement slurry for horizontal shale gas wells in the Eastern Chongqing Area[J]. Petroleum Drilling Techniques, 2022, 50(3): 39–45.
    [7]
    王建云,张红卫,邹书强,等. 顺北油气田低压易漏层泡沫水泥浆固井技术[J]. 石油钻探技术,2022,50(4):25–30.

    WANG Jianyun, ZHANG Hongwei, ZOU Shuqiang, et al. Foamed cement slurry cementing technology for low-pressure and leakage-prone layers of the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 25–30.
    [8]
    吴柏志,张怀兵. 满深1井碳酸盐岩地层自愈合水泥浆固井技术[J]. 石油钻探技术,2021,49(1):67–73. doi: 10.11911/syztjs.2020071

    WU Bozhi, ZHANG Huaibing. Cementing technology of a self-healing cement slurry in the carbonate formations in the Well Manshen 1[J]. Petroleum Drilling Techniques, 2021, 49(1): 67–73. doi: 10.11911/syztjs.2020071
    [9]
    王鼎,万向臣,杨晨. 低摩阻耐压防漏低密度水泥浆固井技术[J]. 钻井液与完井液,2022,39(5):608–614.

    WANG Ding, WAN Xiangchen, YANG Chen. Well cementing with low friction pressure resistant leaking preventive low density cement slurry[J]. Drilling Fluid & Completion Fluid, 2022, 39(5): 608–614.
    [10]
    闵江本,刘小利,万向臣. 长庆油田洛河水层防腐固井水泥浆及配套工艺技术[J]. 钻井液与完井液,2021,38(2):231–236.

    MIN Jiangben, LIU Xiaoli, WAN Xiangchen. Corrosion inhibitive cement slurry and supporting techniques for cementing the Luohe aquifer in Changqing Oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(2): 231–236.
    [11]
    李治衡,张晓诚,谢涛,等. 动态复杂压力下的水泥浆体系及性能评价[J]. 钻井液与完井液,2021,38(2):237–242.

    LI Zhiheng, ZHANG Xiaocheng, XIE Tao, et al. Study and application of evaluating the performance of cement slurries under dynamic complex pressures[J]. Drilling Fluid & Completion Fluid, 2021, 38(2): 237–242.
    [12]
    黄柏宗. 紧密堆积理论优化的固井材料和工艺体系[J]. 钻井液与完井液,2001,18(6):1–9. doi: 10.3969/j.issn.1001-5620.2001.06.001

    HUANG Bozong. Cementing material and process system optimized by compact stacking theory[J]. Drilling Fluid & Completion Fluid, 2001, 18(6): 1–9. doi: 10.3969/j.issn.1001-5620.2001.06.001
    [13]
    侯亚伟,田野,马春旭,等. 0.9 g/cm3超低密度水泥浆体系室内研究[J]. 钻井液与完井液,2021,38(3):351–355.

    HOU Yawei, TIAN Ye, MA Chunxu, et al. Laboratory research on 0.9 g/cm3 ultra-low density cement slurry[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 351–355.
    [14]
    陈晓华,狄伟. 针对裂缝性地层的低密度高强度韧性水泥浆体系研究[J]. 钻井液与完井液,2021,38(1):109–115. doi: 10.3969/j.issn.1001-5620.2021.01.018

    CHEN Xiaohua, DI Wei. Low-density and strength cement slurry for fractured formation[J]. Drilling Fluid & Completion Fluid, 2021, 38(1): 109–115. doi: 10.3969/j.issn.1001-5620.2021.01.018
    [15]
    王思怡,杨浩,杨世翰,等. 外加剂对矿渣-粉煤灰地聚合物固井水泥浆的影响[J]. 特种油气藏,2022,29(4):169–174.

    WANG Siyi, YANG Hao, YANG Shihan, et al. Effects of admixtures on slag-fly ash geopolymer cementing slurry[J]. Special Oil & Gas Reserviors, 2022, 29(4): 169–174.
    [16]
    王建瑶,杨昆鹏,梅明佳. 水不分散水泥浆体系适应性研究与现场应用[J]. 钻井液与完井液,2021,38(4):499–503.

    WANG Jianyao, YANG Kunpeng, MEI Mingjia. The adaptability and application of a water non-dispersible cement slurry[J]. Drilling Fluid & Completion Fluid, 2021, 38(4): 499–503.
    [17]
    李万东. 厄瓜多尔Parahuacu油田固井技术[J]. 石油钻探技术,2021,49(1):74–80. doi: 10.11911/syztjs.2020109

    LI Wandong. Cementing technology applied in the Parahuacu Oilfield of Ecuador[J]. Petroleum Drilling Techniques, 2021, 49(1): 74–80. doi: 10.11911/syztjs.2020109
    [18]
    高继超,李建华,周雪,等. 纳米基复合增强剂的研究与性能评价[J]. 钻井液与完井液,2020,37(5):651–655.

    GAO Jichao, LI Jianhua, ZHOU Xue, et al. Study and evaluation of a nano compound strength enhancer[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 651–655.
    [19]
    李鹏晓,孙富全,何沛其,等. 紧密堆积优化固井水泥浆体系堆积密实度[J]. 石油钻采工艺,2017,39(3):307–312.

    LI Pengxiao, SUN Fuquan, HE Peiqi, et al. Packing compactness of cementing slurry system for close packing optimization[J]. Oil Drilling & Production Technology, 2017, 39(3): 307–312.
    [20]
    谢关宝. 轻质水泥浆固井质量测井评价标准构建[J]. 石油钻探技术,2022,50(1):119–126.

    XIE Guanbao. Establishment of logging evaluation criteria for the cementing quality of low-density cement slurries[J]. Petroleum Drilling Techniques, 2022, 50(1): 119–126.
    [21]
    刘浩亚,鲍洪志,刘亚青,等. 改性高铝水泥浆的负温硬化性能及其增强机制[J]. 石油钻探技术,2021,49(2):54–60.

    LIU Haoya, BAO Hongzhi, LIU Yaqing, et al. Hardening properties and enhancement mechanisms of modified alumina cement at minus temperature[J]. Petroleum Drilling Techniques, 2021, 49(2): 54–60.
    [22]
    李斐. 抗高温弹韧性水泥浆体系优化研究[J]. 钻井液与完井液,2021,38(5):623–627.

    LI Fei. Study on optimization of high temperature cement slurry with elasticity and toughness[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 623–627.
    [23]
    王敬朋,熊友明,路宗羽,等. 超深井抗盐高密度固井水泥浆技术[J]. 钻井液与完井液,2021,38(5):634–640.

    WANG Jingpeng, XIONG Youming, LU Zongyu, et al. Study on salt-resistant high density cement slurry technology for ultra-deep wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 634–640.
    [24]
    田野,宋维凯,侯亚伟,等. 大温差低密度水泥浆性能研究[J]. 钻井液与完井液,2021,38(3):346–350.

    TIAN Ye, SONG Weikai, HOU Yawei, et al. Study on performance of low-density cement slurry at big temperature differences[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 346–350.
    [25]
    王胜,谌强,袁学武,等. 适用于低温地层的纳米复合水泥浆体系研究[J]. 石油钻探技术,2021,49(6):73–80. doi: 10.11911/syztjs.2021009

    WANG Sheng, CHEN Qiang, YUAN Xuewu, et al. Research on a nano-composite cement slurry system suitable for low-temperature formations[J]. Petroleum Drilling Techniques, 2021, 49(6): 73–80. doi: 10.11911/syztjs.2021009
  • Cited by

    Periodical cited type(7)

    1. 梁红军,刘洪涛,颜辉,陈凯枫,阳君奇,周智. 防斜打快技术在库车前陆区的实践应用. 新疆石油天然气. 2023(02): 49-55 .
    2. 马俊强,李飞,张光伟. 浅析煤层气参数井取芯段井斜超标原因及预防措施——基于平参2井. 中国煤层气. 2022(03): 21-25 .
    3. 李成嵩,王银生. 东营地区地热回灌井钻井完井技术研究与试验. 石油钻探技术. 2021(06): 50-54 . 本站查看
    4. 张凯. 复合钻进技术在红柳煤矿冻结孔施工中的应用. 探矿工程(岩土钻掘工程). 2020(02): 54-58 .
    5. 路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 . 本站查看
    6. 刘勇. 石油定向井常用钻具组合的分析与探讨. 中国石油石化. 2017(02): 3-4 .
    7. 李玮,李卓伦,刘伟卿,邱晓宁,陈世春. 扭转冲击提速工具在文安区块的现场应用. 特种油气藏. 2016(04): 144-146+158 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (240) PDF downloads (92) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return