LIU Yaowen, LI Mu. Evaluation on the Production Effect of Coiled Tubing in Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(6): 99-103. DOI: 10.11911/syztjs.2020089
Citation: LIU Yaowen, LI Mu. Evaluation on the Production Effect of Coiled Tubing in Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(6): 99-103. DOI: 10.11911/syztjs.2020089

Evaluation on the Production Effect of Coiled Tubing in Fuling Shale Gas Field

More Information
  • Received Date: March 11, 2020
  • Revised Date: June 29, 2020
  • Available Online: August 13, 2020
  • Coiled tubing (CT) is widely used in the Fuling Shale Gas Field as a gas production string, and its specifications are mainly ϕ50.8 mm×4.45 mm and ϕ38.1 mm×3.68 mm. The production effect of CT in different shale gas wells are different. For the goal involved analyzing the reasons for the differences and improving the application effect of CT in shale gas wells, based on the field applications, the production effect of CT was evaluated from the perspectives of shale gas well liquid carrying effect, wellbore pressure loss and stable production capacity of gas wells. Further, the influences of CT diameter, setting depth and setting timing on CT production effect were analyzed. The results showed that the critical liquid carrying capacity could be reduced by 38% using ϕ50.8 mm×4.45 mm CT rather than the ϕ60.3 mm×4.83 mm conventional tubing. The water gas ratio had a significant influence on the production effect of coiled tubing. The larger water gas ratio, the CT diameter and setting depth could more significantly influence the wellbore pressure loss and gas well stable production time. For shale gas wells with a water gas ratio of 0–1.5 m3/104m3 the earlier the ϕ50.8 mm×4.45 mm CT was set, the longer the stable flow production period, and the higher the cumulative gas production in the flow production period. The research demonstrated that the application of CT could achieve the continuous and stable production of shale gas wells with low water gas ratio, and the result could play a guiding role in improving the application effect of CT in Fuling Shale Gas Field.
  • [1]
    曹孟京,吴晓东,安永生,等. 页岩气井连续油管采气管柱优化设计[J]. 断块油气田, 2018, 25(6): 811–814.

    CAO Mengjing, WU Xiaodong, AN Yongsheng, et al. Optimal design of coiled tubing for production string of gas well in shale gas field[J]. Fault-Block Oil & Gas Field, 2018, 25(6): 811–814.
    [2]
    赵彬彬,李丽,白晓弘,等. 水平井速度管柱排水采气技术研究与试验[J]. 石油机械, 2018, 46(1): 88–91, 99.

    ZHAO Binbin, LI Li, BAI Xiaohong, et al. Research and test on water drainage gas recovery velocity string technology for horizontal well[J]. China Petroleum Machinery, 2018, 46(1): 88–91, 99.
    [3]
    吴武超,李治平,赖枫鹏,等. 致密气藏水平井速度管下入时间确定方法[J]. 断块油气田, 2015, 22(4): 522–525.

    WU Wuchao, LI Zhiping, LAI Fengpeng, et al. Method to determine time of installing velocity string for horizontal well in tight gas reservoirs[J]. Fault-Block Oil & Gas Field, 2015, 22(4): 522–525.
    [4]
    谭晓华,李晓平. 考虑气体连续携液及液滴直径影响的气井新模型[J]. 水动力学研究与进展A辑, 2013, 28(1): 41–47.

    TAN Xiaohua, LI Xiaoping. Gas wells model of continuous removal of liquids through a new estimation of droplet diameter[J]. Chinese Journal of Hydrodynamics, 2013, 28(1): 41–47.
    [5]
    ZHOU Desheng, YUAN Hong. A new model for gas well predicting liquid loading[R]. SPE 120580, 2010.
    [6]
    刘永辉,艾先婷,罗程程,等. 预测水平井携液临界气流速的新模型[J]. 深圳大学学报(理工版), 2018, 35(6): 551–557.

    LIU Yonghui, AI Xianting, LUO Chengcheng, et al. A new model for predicting critical gas velocity of liquid loading in horizontal well[J]. Journal of Shenzhen University(Science & Engineering), 2018, 35(6): 551–557.
    [7]
    明瑞卿,贺会群,胡强法. 水平气井临界携液流量预测新方法[J]. 大庆石油地质与开发, 2018, 37(5): 81–85.

    MING Ruiqing, HE Huiqun, HU Qiangfa. A new predicting method of the critical liquid-loading flow rate for horizontal gas wells[J]. Petroleum Geology & Oilfield Development in Daqing, 2018, 37(5): 81–85.
    [8]
    王琦.水平井井筒气液两相流动模拟实验研究[D].成都: 西南石油大学, 2014.

    WANG Qi. Experimental study on gas-liquid flowig in the wellbore of horizontal well[D]. Chengdu: Southwest Petroleum University, 2014.
    [9]
    陈德春,徐悦新,孟红霞,等. 气井气液两相管流压降计算模型评价与优选[J]. 断块油气田, 2017, 24(6): 840–843.

    CHEN Dechun, XU Yuexin, MENG Hongxia, et al. Evaluation and optimization of pressure drop calculation models for gas-liquid two-phase pipe flow in gas well[J]. Fault-Block Oil & Gas Field, 2017, 24(6): 840–843.
    [10]
    田云,王志彬,李颖川,等. 速度管排水采气井筒压降模型的评价及优选[J]. 断块油气田, 2015, 22(1): 130–133.

    TIAN Yun, WANG Zhibin, LI Yingchuan, et al. Evaluation and optimization of wellbore pressure drop model for drainage and gas recovery by velocity string[J]. Fault-Block Oil & Gas Field, 2015, 22(1): 130–133.
  • Related Articles

    [1]ZHANG Dongqing, WAN Yunqiang, ZHANG Wenping, DAI Yongbo, ZHANG Jincheng, XU Mingbiao. Optimal and Fast Drilling Technologies for Stereoscopic Development of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 16-21. DOI: 10.11911/syztjs.2022097
    [2]FAN Hongkang, LIU Jinge, ZANG Yanbin, ZHOU Xianhai, AI Jun, SONG Zheng. Drilling Technology for Adjustment Wells of the Jiaoshiba Block in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2021, 49(3): 48-54. DOI: 10.11911/syztjs.2020122
    [3]LIU Yanqian. Key Drilling Technologies of Infill Wells in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(5): 21-26. DOI: 10.11911/syztjs.2020039
    [4]LIU Huamin, LI Mu, LIU Qiaoping, ZHANG Liyuan. Research and Application of Plunger Gas Lift Technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 102-107. DOI: 10.11911/syztjs.2020022
    [5]LIU Yaowen. Key Technologies of Green Development in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(5): 8-13. DOI: 10.11911/syztjs.2018115
    [6]PAN Jun, LIU Weidong, ZHANG Jincheng. Drilling Technology Progress and Recommendations for the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(4): 9-15. DOI: 10.11911/syztjs.2018119
    [7]SHU Man, ZHAO Mingkun, XU Mingbiao. Plugging while Drilling Technology Using Oil-Based Drilling Fluid in Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2017, 45(3): 21-26. DOI: 10.11911/syztjs.201703004
    [8]YUE Shouqun, WANG Jinjie, SU Qianrong, CHANG Helei, CHEN Lin. The Optimization of Casing Programs for Horizontal Wells in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2017, 45(1): 17-20. DOI: 10.11911/syztjs.201701003
    [9]ZANG Yanbin, ZHANG Jincheng, ZHAO Mingkun, SONG Zheng, LUO Rui. Economic Performance Assessments of Multi-Well Pad Drilling Technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(6): 30-35. DOI: 10.11911/syztjs.201606005
    [10]ZHANG Jincheng, AI Jun, ZANG Yanbin, YANG Haiping, CHEN Xiaofeng. Multi-Well Pad Technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(3): 9-15. DOI: 10.11911/syztjs.201603002
  • Cited by

    Periodical cited type(3)

    1. 于洋. 连续油管泡沫钻塞技术研究与应用. 复杂油气藏. 2022(02): 90-96 .
    2. 柳军,杜智刚,牟少敏,王睦围,张敏,殷腾,俞海,曹大勇. 连续油管分簇射孔管柱通过能力分析模型及影响因素研究. 特种油气藏. 2022(05): 139-148 .
    3. 任鸽. 连续油管作业在深部煤系气井压裂返排砂堵中的应用. 山东煤炭科技. 2021(04): 172-174 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (567) PDF downloads (91) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return