Citation: | LIAO Dongliang. Evaluation Methods and Engineering Application of the Feasibility of “Double Sweet Spots”in Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 94-99. DOI: 10.11911/syztjs.2020063 |
The determination of“double sweet spots”(the geological and engineering sweet spot) in shale gas reservoirs is an effective method to determine whether it economically worthy of drilling, and the quantitative study of“double sweet spots”is also conducive to the optimization of drilling and fracturing, hence improving the development efficiency of shale gas. In view of the problems of numerous sweet spot parameters and low accuracy of sweet spot evaluation, the main sweet spot parameters were optimized by using the correlation coefficient method, whereby the independent weight coefficient method was adopted to quantitatively characterize both the geological sweet spot and the engineering sweet spot. Taking the strata of Jiaoshiba Block in the Fuling Shale Gas Field as the research object, five primary geological sweet spot parameters and four primary engineering sweet spot parameters were selected. The correlation coefficient of geological sweet spot was 0.89, and that of engineering sweet spot was 0.85. The research results showed that the“double sweet spots”and fracturing ability of shale gas could be used to optimize drilling and fracturing layers, horizontal drilling azimuth and casing engineering safety management. On this basis, the positive role and advantages of horizontal drilling azimuth optimization for casing safety and large volume fracturing as well as determining fracability in shale gas reservoir were analyzed and deemed feasible.
[1] |
AMBROSE R J, HARTMAN R C, CAMPOS M D, et al. New pore-scale considerations for shale gas in place calculations[R]. SPE 131772, 2010.
|
[2] |
PRISE G J, STEWART D R, BIRD T M, et al. Successful completion operations on ravenspurn north development[R]. SPE 26744, 1993.
|
[3] |
潘仁芳, 龚琴, 鄢杰, 等. 页岩气藏“甜点”构成要素及富气特征分析: 以四川盆地长宁地区龙马溪组为例[J]. 天然气工业, 2016, 36(3): 7–13. doi: 10.3787/j.issn.1000-0976.2016.03.002
PAN Renfang, GONG Qin, YAN Jie, et al. Elements and gas enrichment laws of sweet spots in shale gas reservoir: a case study of the Longmaxi Formation in Changning Block, Sichuan Basin[J]. Natural Gas Industry, 2016, 36(3): 7–13. doi: 10.3787/j.issn.1000-0976.2016.03.002
|
[4] |
邹才能, 杨智, 张国生, 等. 常规-非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发, 2014, 41(1): 14–27. doi: 10.11698/PED.2014.01.02
ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Conventional and unconventional petroleum “orderly accumulation”: concept and practical significance[J]. Petroleum Exploration and Development, 2014, 41(1): 14–27. doi: 10.11698/PED.2014.01.02
|
[5] |
CLARKSON C R, WOOD J, BURGIS S E, et al. Nanopore structure analysis and permeability predictions for a tight gas/shale reservoir using low-pressure adsorption and mercury intrusion techniques[R]. SPE 155537, 2012.
|
[6] |
BULLER D, HUGHES S N, MARKET J, et al. Petrophysical evaluation for enhancing hydraulic stimulation in horizontal shale gas wells[R]. SPE 132990, 2010.
|
[7] |
RICKMAN R, MULLEN M J, PETRE J E, et al. Practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett shale[R]. SPE 115258, 2008.
|
[8] |
ROSS D J K, BUSTIN R M. Shale gas potential of the lower jurassic gordondale member, northeastern British Columbia, Canada[J]. Bulletin of Canadian Petroleum Geology, 2007, 55(1): 51–75. doi: 10.2113/gscpgbull.55.1.51
|
[9] |
WARPINSKI N R, CLARK J A, SCHMIDT R A, et al. Laboratory investigation on the-effect of in-situ stresses on hydraulic fracture containment[J]. Society of Petroleum Engineers Journal, 1982, 22(3): 333–340. doi: 10.2118/9834-PA
|
[10] |
ANDERSON G D. Effects of friction on hydraulic fracture growth near unbonded interfaces in rocks[J]. Society of Petroleum Engineers Journal, 1981, 21(1): 21–29. doi: 10.2118/8347-PA
|
[11] |
BLAIR S C, THORPE R K, HEUZE F E, et al. Laboratory observations of the effect of geologic discontinuities on hydrofracture propagation[R]. ARMA-89-0443, 1989.
|
[12] |
DANESHY A A. Hydraulic fracture propagation in layered formations[J]. Society of Petroleum Engineers Journal, 1978, 18(1): 33–41. doi: 10.2118/6088-PA
|
[13] |
廖东良, 路保平. 页岩气工程甜点评价方法: 以四川盆地焦石坝页岩气田为例[J]. 天然气工业, 2018, 38(2): 43–50. doi: 10.3787/j.issn.1000-0976.2018.02.006
LIAO Dongliang, LU Baoping. An evaluation method of engineering sweet spots of shale gas reservoir development: a case study from the Jiaoshiba Gas Field, Sichuan Basin[J]. Natural Gas Industry, 2018, 38(2): 43–50. doi: 10.3787/j.issn.1000-0976.2018.02.006
|
[14] |
廖东良, 肖立志, 张元春. 基于矿物组分与断裂韧度的页岩地层脆性指数评价模型[J]. 石油钻探技术, 2014, 42(4): 37–41.
LIAO Dongliang, XIAO Lizhi, ZHANG Yuanchun. Evaluation model for shale brittleness index based on mineral content and fracture toughness[J]. Petroleum Drilling Technigues, 2014, 42(4): 37–41.
|
[15] |
廖东良, 曾义金. 利用测井资料建立地层剪破裂模型[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1268–1276.
LIAO Dongliang, ZENG Yijin. Establishion of formation shear fracture model by logging data[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(4): 1268–1276.
|
[16] |
王珍应, 马德坤, 杜坚. 钻头钻进方向预测研究[J]. 石油机械, 1994, 22(6): 19–22, 28.
WANG Zhenying, MA Dekun, DU Jian. Study on prediction of drilling direction[J]. China Petroleum Machinery, 1994, 22(6): 19–22, 28.
|
[17] |
尹虎, 唐志强, 黄晓川. 定向井井壁崩落与钻进方向优化分析[J]. 钻采工艺, 2014, 37(3): 31–33. doi: 10.3969/J.ISSN.1006-768X.2014.03.09
YIN Hu, TANG Zhiqiang, HUANG Xiaochuan. Analysis of borehole wall spallation and drilling direction optimization of directional well[J]. Drilling & Production Technology, 2014, 37(3): 31–33. doi: 10.3969/J.ISSN.1006-768X.2014.03.09
|
1. |
张金煌,杜连龙,张兴华,陈光峰. 海上深层潜山长裸眼地层测试技术. 油气井测试. 2024(01): 19-25 .
![]() |