Citation: | DING Shidong, TAO Qian, MA Lanrong. Progress, Outlook, and the Development Directions at Sinopec in Cementing Technology Progress[J]. Petroleum Drilling Techniques, 2019, 47(3): 41-49. DOI: 10.11911/syztjs.2019073 |
In recent years, Sinopec has maintained a commitment to intensivying the exploration & development of deep, ultra-deep strata, shale gas and tight oil and gas. In order to meet the needs of complex oil and gas exploration & development, Sinopec has developed a series of new oil well additives with high performance qualities. The additives include self-healing, nano-liquid silicon, and cover a wide temperature spectrum, are resistant to high temperatures. In addition, Sinopec has developed, high density and low density as well as elastoplastic cement slurry, and has formed the matching technology of ultra-deep well HTHP cementing, shale oil/gas cementing, as well as the ultra-long interval cementing with significant temperature difference. These new additives can also meet the cementing requirement under complex geological conditions, and promote the company’s oil and gas exploration & development process. Many new tools, equipment and products have been developed, including high-performance liner hangers, multiple stage cementers, automatic control cementing truck and integrated nitrogen foam cement slurry system, etc. Optimized cementing design software with independent intellectual property rights has been developed, so as to improve the level of domestic cementing technologies and core competitiveness. Going forward, the cementing technology development of Sinopec plans to adhere to the principle of demand-oriented product development, while maintaining a focus on the development trends of cementing for complex deep/ultra-deep wells, low-permeability and shale oil/gas, and complex pressure system technology for adjustment wells in old oilfields. Thus, the new technologies will better serve high-efficiency exploration & development of complex oil and gas reservoirs. At the same time, more effort will be directed to strengthen cross-disciplinary technology integration. In addition, Sinopec will research and develop new multi-functional, broad-spectrum, intelligent and integrated cementing materials, as well as cementing equipment to integrate with high-power, automation, intelligence, designing and monitoring.
[1] |
路保平,丁士东,何龙,等. 低渗透油气藏高效开发钻完井技术研究主要进展[J]. 石油钻探技术, 2019, 47(1): 1–6.
LU Baoping, DING Shidong, HE Long, et al. Key achievement of drilling & completion technologies for the efficient development of low permeability oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 1–6.
|
[2] |
杜金虎,何海清,杨涛,等. 中国致密油勘探进展及面临的挑战[J]. 中国石油勘探, 2014, 19(1): 1–9. doi: 10.3969/j.issn.1672-7703.2014.01.001
DU Jinhu, HE Haiqing, YANG Tao, et al. Progress in China′s tight oil exploration and challenges[J]. China Petroleum Exploration, 2014, 19(1): 1–9. doi: 10.3969/j.issn.1672-7703.2014.01.001
|
[3] |
路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术, 2018, 46(1): 1–13.
LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–13.
|
[4] |
刘洋,严海兵,余鑫,等. 井内压力变化对水泥环密封完整性的影响及对策[J]. 天然气工业, 2014, 34(4): 95–98. doi: 10.3787/j.issn.1000-0976.2014.04.015
LIU Yang, YAN Haibing, YU Xin, et al. Negative impacts of borehole pressure change on cement sheath sealing integrity and countermeasures[J]. Natural Gas Industry, 2014, 34(4): 95–98. doi: 10.3787/j.issn.1000-0976.2014.04.015
|
[5] |
谭春勤,刘伟,丁士东,等. SFP弹韧性水泥浆体系在页岩气井中的应用[J]. 石油钻探技术, 2011, 39(3): 53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009
TAN Chunqin, LIU Wei, DING Shidong, et al. Application of SFP elasto-toughness slurry in shale gas well[J]. Petroleum Drilling Techniques, 2011, 39(3): 53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009
|
[6] |
齐奉忠,杨成颉,刘子帅. 提高复杂油气井固井质量技术研究:保证水泥环长期密封性的技术措施[J]. 石油科技论坛, 2013, 32(1): 66–67. doi: 10.3969/j.issn.1002-302x.2013.01.004
QI Fengzhong, YANG Chengjie, LIU Zishuai. Improve cementing quality of complicated oil and gas wells-ensure long-term sealing performance of cement sheath[J]. Oil Forum, 2013, 32(1): 66–67. doi: 10.3969/j.issn.1002-302x.2013.01.004
|
[7] |
陶谦. 气井水泥环长期密封失效机理及预防措施[J]. 钻采工艺, 2018, 41(3): 25–29. doi: 10.3969/J.ISSN.1006-768X.2018.03.08
TAO QIAN. Long-term sealing failure mechanism of cement sheath in gas wells and preventive measures[J]. Drilling & Production Technology, 2018, 41(3): 25–29. doi: 10.3969/J.ISSN.1006-768X.2018.03.08
|
[8] |
陶谦,陈星星. 四川盆地页岩气水平井B环空带压原因分析与对策[J]. 石油钻采工艺, 2017, 39(5): 588–593.
TAO Qian, CHEN Xingxing. Causal analysis and countermeasures on B sustained casing pressure of shale-gas horizontal wells in the Sichuan Basin[J]. Oil Drilling & Production Technology, 2017, 39(5): 588–593.
|
[9] |
卢子臣,孔祥明,岳蕾,等. 水泥石单一裂隙的渗流规律及其遇水自愈合性能[J]. 硅酸盐学报, 2014, 41(8): 960–965.
LU Zichen, KONG Xiangming, YUE Lei, et al. Water flow through single cracpaste and self-healing property of crack[J]. Journal of the Chinese Ceramic Society, 2014, 41(8): 960–965.
|
[10] |
刘仍光,周仕明,陶谦,等. 掺橡胶乳液和弹性粒子柔性油井水泥石的微结构[J]. 硅酸盐学报, 2015, 43(10): 1475–1482.
LIU Rengguang, ZHOU Shiming, TAO Qian, et al. Micro-structure of flexible oilwell cement stone mixed with latex and elastic particle[J]. Journal of the Chinese Ceramic Society, 2015, 43(10): 1475–1482.
|
[11] |
高元,桑来玉,杨广国,等. 胶乳纳米液硅高温防气窜水泥浆体系[J]. 钻井液与完井液, 2016, 33(3): 67–72. doi: 10.3969/j.issn.1001-5620.2016.03.014
GAO Yuan, SANG Laiyu, YANG Guangguo, et al. Cement slurry treated with latex Nano liquid silica anti-gas-migration agent[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 67–72. doi: 10.3969/j.issn.1001-5620.2016.03.014
|
[12] |
魏浩光,张鑫,丁士东,等. PEG对纳米硅水泥浆触变性改善的研究[J]. 钻井液与完井液, 2018, 35(4): 82–86. doi: 10.3969/j.issn.1001-5620.2018.04.015
WEI Haoguang, ZHANG Xin, DING Shidong, et al. Rheological improvement of nano-phase silicon cement slurry with polyglycol[J]. Drilling Fluid & Completion Fluid, 2018, 35(4): 82–86. doi: 10.3969/j.issn.1001-5620.2018.04.015
|
[13] |
刘学鹏,刘仍光. 油井水泥降失水剂的作用机理研究[J]. 化学研究与应用, 2017, 29(12): 1298–1302.
LIU Xuepeng, LIU Rengguang. Mechanisms involved influid loss control of oilwell cement slurries by water-soluble polyme[J]. Chemical Research and Application, 2017, 29(12): 1298–1302.
|
[14] |
刘学鹏,张明昌,方春飞. 耐高温油井水泥降失水剂的合成和性能[J]. 钻井液与完井液, 2015, 32(6): 61–64, 107.
LIU Xuepeng, ZHANG Mingchang, FANG Chunfei. Synthesis and properties of a high temperature filter loss reducer for oil well cementing[J]. Drilling Fluid & Completion Fluid, 2015, 32(6): 61–64, 107.
|
[15] |
方春飞,刘学鹏,张明昌. 耐高温油井水泥缓凝剂SCR180L的合成及评价[J]. 石油钻采工艺, 2016, 38(2): 171–175.
FANG Chunfei, LIU Xuepeng, ZHANG Mingchang. Synthesis and assessment of heat-resistant cement retardant SCR180L for oil producers[J]. Oil Drilling & Production Technology, 2016, 38(2): 171–175.
|
[16] |
王敏生,光新军,孔令军. 形状记忆聚合物在石油工程中的应用前景[J]. 石油钻探技术, 2018, 46(5): 14–20.
WANG Minsheng, GUANG Xinjun, KONG Lingjun. The prospects of applying shape memory polymers in petroleum engineering[J]. Petroleum Drilling Techniques, 2018, 46(5): 14–20.
|
[17] |
陈雷,周仕明,赵艳,等. 固井用热固性树脂–镁氧水泥复合材料研究[J]. 石油钻探技术, 2019, 47(2): 74–80.
CHEN Lei, ZHOU Shiming, ZHAO Yan, et al. Study on thermosetting resin-magnesia composites for cementing[J]. Petroleum Drilling Techniques, 2019, 47(2): 74–80.
|
[18] |
刘伟,刘学鹏,陶谦. 适合页岩气固井的洗油隔离液的研究与应用[J]. 特种油气藏, 2014, 21(6): 119–122, 147. doi: 10.3969/j.issn.1006-6535.2014.06.029
LIU Wei, LIU Xuepeng, TAO Qian. Development and application of flushing spacer for cementing in shale gas reservoirs[J]. Special Oil & Gas Reservoirs, 2014, 21(6): 119–122, 147. doi: 10.3969/j.issn.1006-6535.2014.06.029
|
[19] |
马兰荣,达伟,韩峰,等. 高性能尾管悬挂器关键技术[J]. 断块油气田, 2017, 24(6): 859–862.
MA Lanrong, DA Wei, HAN Feng, et al. Key techniques for high-performance liner hanger[J]. Fault-Block Oil & Gas Field, 2017, 24(6): 859–862.
|
[20] |
肖京男,刘建,桑来玉,等. 充气泡沫水泥浆固井技术在焦页9井的应用[J]. 断块油气田, 2016, 23(6): 835–837.
XIAO Jingnan, LIU Jian, SANG Laiyu, et al. Application of foamed cement slurry to Jiaoye-9 Well[J]. Fault-Block Oil & Gas Field, 2016, 23(6): 835–837.
|
[21] |
陶谦,周仕明,张晋凯,等. 水泥浆流变性对水平井固井顶替界面的影响:基于天河一号大规模集群计算平台的数值模拟[J]. 石油钻采工艺, 2017, 39(2): 185–191.
TAO Qian, ZHOU Shiming, ZHANG Jinkai, et al. Effect of rheological property of slurry on cementing displacement interface of horizontal well: the numerical simulation based on large-scale cluster computing platform Tianhe-1[J]. Oil Drilling & Production Technology, 2017, 39(2): 185–191.
|
[22] |
齐奉忠,杜建平,魏群宝. 固井材料技术新进展及研究方向[J]. 石油科技论坛, 2015, 34(4): 45–48. doi: 10.3969/j.issn.1002-302x.2015.04.009
QI Fengzhong, DU Jianping, WEI Qunbao. New development and research area of cementing material and technology[J]. Oil Forum, 2015, 34(4): 45–48. doi: 10.3969/j.issn.1002-302x.2015.04.009
|
[23] |
刘硕琼,齐奉忠. 中国石油固井面临的挑战及攻关方向[J]. 石油钻探技术, 2013, 41(6): 6–11. doi: 10.3969/j.issn.1001-0890.2013.06.002
LIU Shuoqiong, QI Fengzhong. Challenges and development trends of cementing technology in CNPC[J]. Petroleum Drilling Tech-niques, 2013, 41(6): 6–11. doi: 10.3969/j.issn.1001-0890.2013.06.002
|
[24] |
齐奉忠,刘硕琼,沈吉云,等. 中国石油固井技术进展及面临的问题[J]. 石油科技论坛, 2013, 32(4): 5–8, 69. doi: 10.3969/j.issn.1002-302x.2013.04.002
QI Fengzhong, LIU Shuoqiong, SHEN Jiyun, et al. Problem facing CNPC well cementing technological development[J]. Oil Forum, 2013, 32(4): 5–8, 69. doi: 10.3969/j.issn.1002-302x.2013.04.002
|
1. |
刘西恩,孙志峰,仇傲,李杰,罗博,彭凯旋,罗瑜林. 随钻四极子声波测井仪的设计及试验. 石油钻探技术. 2022(03): 125-131 .
![]() | |
2. |
孙志峰,仇傲,金亚,李杰,罗博,彭凯旋. 随钻多极子声波测井仪接收声系的优化设计与试验. 石油钻探技术. 2022(04): 114-120 .
![]() | |
3. |
李杰,刘西恩,罗博,孙志峰,仇傲,罗瑜林. 国产随钻单极声波测井仪的设计及应用. 石油管材与仪器. 2022(06): 38-43 .
![]() | |
4. |
吴金平,陆黄生,朱祖扬,张卫. 随钻声波测井声系短节模拟样机试验研究. 石油钻探技术. 2016(02): 106-111 .
![]() |