Citation: | LIU Wei, FU Jiasheng, GUO Qingfeng, et al. Research progress and prospects of key technologies for intelligent managed pressure drilling [J]. Petroleum Drilling Techniques, 2024, 52(5):42−50. DOI: 10.11911/syztjs.2024103 |
With the gradual development of oil and gas exploration towards complex and difficult-to-use fields such as deep formation, deep water, and unconventional areas, the underground risks such as “surge, leakage, collapse, and sticking” have significantly increased. It is urgent to further develop precise managed pressure drilling (MPD) technology and equipment with higher automation and intelligent control capabilities, accelerate the development from semi-automation, automation, to intelligence, achieve accurate and early prediction of complex working conditions, and control and eliminate drilling risks faster and more accurately. A detailed investigation on the intelligent development of MPD technology and equipment in China and abroad was conducted, and the research progress of intelligent pressure control in equipment such as intelligent control, data acquisition and processing, as well as key technologies including complex underground deep learning methods and intelligent decision-making analysis software was discussed. Preliminary experimental verification shows the technical advantages of intelligent MPD technology, but it still needs to be fully verified and improved on site. In the future, by accelerating the cross-border integration of MPD technology and intelligent technology, it is expected to establish an intelligent pressure control drilling technology system that supports efficient exploration and development of complex oil and gas and help China’s oil and gas engineering technology achieve high-level self-reliance and self-improvement.
[1] |
田野,王成龙,柳亚亚,等. 深水钻井中控压响应时间及其影响因素分析[J]. 石油机械,2023,51(4):61–67.
TIAN Ye, WANG Chenglong, LIU Yaya, et al. Analysis on managed pressure response time and its influential factors in deepwater drilling[J]. China Petroleum Machinery, 2023, 51(4): 61–67.
|
[2] |
张锐尧,李军,杨宏伟,等. 空心球多梯度控压钻井井筒压力控制方法[J]. 天然气工业,2022,42(11):98–105.
ZHANG Ruiyao, LI Jun, YANG Hongwei, et al. A control method of wellbore pressure during multi-gradient managed pressure drilling based on hollow glass sphere[J]. Natural Gas Industry, 2022, 42(11): 98–105.
|
[3] |
何保生,张钦岳,冷雪霜. 墨西哥超深水盐下钻井技术及实践[J]. 中国海上油气,2021,33(6):101–109.
HE Baosheng, ZHANG Qinyue, LENG Xueshuang. Ultra deepwater pre-salt drilling technologies and their practices in Mexico[J]. China Offshore Oil and Gas, 2021, 33(6): 101–109.
|
[4] |
谭鹏,何思龙,李明印,等. 库车坳陷超深层复杂气田钻完井技术[J]. 石油钻采工艺,2021,43(5):580–585.
TAN Peng, HE Silong, LI Mingyin, et al. Drilling and completion technologies for ultra-deep complex gas field in Kuqu Depres-sion[J]. Oil Drilling & Production Technology, 2021, 43(5): 580–585.
|
[5] |
刘彪,潘丽娟,王沫. 顺北油气田二区断控体油气藏井身结构设计及配套技术[J]. 断块油气田,2023,30(4):692–697.
LIU Biao, PAN Lijuan, WANG Mo. Well structure design and supporting technology of fault-controlled reservoir of No.2 Block in Shunbei Oil-Gas Field[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 692–697.
|
[6] |
刘伟,周英操,石希天,等. 塔里木油田库车山前超高压盐水层精细控压钻井技术[J]. 石油钻探技术,2020,48(2):23–28.
LIU Wei, ZHOU Yingcao, SHI Xitian, et al. Precise managed pressure drilling technology for ultra-high pressure brine layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23–28.
|
[7] |
Halliburton. FlexTM MPD[EB/OL]. [2024-08-20]. https://cdn.brandfolder.io/G1R8FA5S/as/q5uwmy-7be7kg-450xeq/Flex_MPD.pdf.
|
[8] |
Halliburton. Implementing a flexible MPD approach in Vaca Muerta[EB/OL]. [2024-08-20]. https://cdn.brandfolder.io/G1R8FA5S/as/cpp4zcjxtnfh946wgvmgg7p/Flex_MPD-UBD-HAL-70-71_EnP.pdf.
|
[9] |
Weatherford. Victus™ manifold[EB/OL]. [2024-08-20]. https://www.weatherford.com/documents/technical-specification-sheet/products-and-services/drilling/victus-manifold/.
|
[10] |
Weatherford. Victus™ intelligent MPD[EB/OL]. [2024-08-20]. https://www.weatherford.com/documents/brochure/products-and-services/drilling/victus-intelligent-mpd/.
|
[11] |
Weatherford. MPD fluid-extraction system[EB/OL]. [2024-08-20]. https://www.weatherford.com/documents/technical-specification-sheet/products-and-services/drilling/mpd-fluid-extraction-system/.
|
[12] |
Schlumberger. I-balance[EB/OL]. [2024-08-20]. https://www.slb.com/-/media/files/mi/product-sheet/i-balance-ps.ashx.
|
[13] |
Schlumberger. Choke manifolds[EB/OL]. [2024-08-20]. https://www.slb.com/-/media/files/mi/brochure/choke-manifolds-brochure.ashx.
|
[14] |
Schlumberger. MPD reduces rig operating days in the Bakken[EB/OL]. [2024-08-20]. https://www.slb.com/-/media/files/mi/industry-article/2019-0801-ep-mpd-bakken.ashx.
|
[15] |
NOV. MPowerD choke manifold: 5000S[EB/OL]. [2024-08-20]. https://www.nov.com/-/media/nov/files/products/wbt/wellsite-services/mpowerd-choke-manifold-5000s/mpowerd-choke-manifold-5000s-spec-sheet.pdf.
|
[16] |
CORREA L. Industry’s first truly integrated MPD control system advances offshore drilling efficiency[EB/OL]. [2024-08-20]. https://www.nov.com/-/media/nov/files/products/wbt/wellsite-services/mpowerd-managed-pressure-drilling-systems/industrys-first-truly-integrated-mpd-control-system-advances-offshore-drilling-efficiency--2021-worl.pdf.
|
[17] |
Opla Energy. MPDSmart™ manifold[EB/OL]. [2024-08-20]. https://www.oplaenergy.com/technology-and-solutions/mpd-smart-manifold.
|
[18] |
MAMMADOV E, HOFFARTH D. Revolutionizing rig integration with next-generation MPD equipment: the pressure management device (PMD)[R]. SPE 214552, 2023.
|
[19] |
刘伟,周英操,王瑛,等. 国产精细控压钻井系列化装备研究与应用[J]. 石油机械,2017,45(5):28–32.
LIU Wei, ZHOU Yingcao, WANG Ying, et al. Domestic accurate managed pressure drilling series equipment and technology[J]. China Petroleum Machinery, 2017, 45(5): 28–32.
|
[20] |
付加胜,刘伟,周英操,等. 单通道控压钻井装备压力控制方法与应用[J]. 石油机械,2017,45(1):6–9.
FU Jiasheng, LIU Wei, ZHOU Yingcao, et al. Pressure control method and application of managed pressure drilling equipment with single channel[J]. China Petroleum Machinery, 2017, 45(1): 6–9.
|
[21] |
周英操,刘伟. PCDS精细控压钻井技术新进展[J]. 石油钻探技术,2019,47(3):68–74. doi: 10.11911/syztjs.2019071
ZHOU Yingcao, LIU Wei. New progress on PCDS precise pressure management drilling technology[J]. Petroleum Drilling Techniques, 2019, 47(3): 68–74. doi: 10.11911/syztjs.2019071
|
[22] |
周英操,郭庆丰,蔡骁,等. 精细控压钻井技术及装备研究进展[J]. 钻采工艺,2024,47(4):94–104. doi: 10.3969/J.ISSN.1006-768X.2024.04.13
ZHOU Yingcao, GUO Qingfeng, CAI Xiao, et al. Research advance of managed pressure drilling technology and equipment[J]. Drilling & Production Technology, 2024, 47(4): 94–104. doi: 10.3969/J.ISSN.1006-768X.2024.04.13
|
[23] |
刘伟,王瑛,郭庆丰,等. 精细控压钻井技术创新与实践[J]. 石油科技论坛,2016,35(4):32–37.
LIU Wei, WANG Ying, GUO Qingfeng, et al. Innovation and application of accurate managed pressure drilling technology[J]. Petroleum Science and Technology Forum, 2016, 35(4): 32–37.
|
[24] |
孙海芳,冯京海,肖新宇,等. 川庆钻探工程公司精细控压钻井系统研发及应用[J]. 钻采工艺,2012,35(2):1–4. doi: 10.3969/J.ISSN.1006-768X.2012.02.01
SUN Haifang, FENG Jinghai, XIAO Xinyu, et al. Development and application of fine managed pressure drilling (MPD) system of CCDC[J]. Drilling & Production Technology, 2012, 35(2): 1–4. doi: 10.3969/J.ISSN.1006-768X.2012.02.01
|
[25] |
陈若铭,伊明,杨刚. 精细控压钻井系统[J]. 石油科技论坛,2013,32(3):55–57. doi: 10.3969/j.issn.1002-302x.2013.03.014
CHEN Ruoming, YI Ming, YANG Gang. Precise pressure-controlled drilling system[J]. Petroleum Science and Technology Forum, 2013, 32(3): 55–57. doi: 10.3969/j.issn.1002-302x.2013.03.014
|
[26] |
郗凤亮,徐朝阳,马金山,等. 控压钻井自动分流管汇系统设计与数值模拟研究[J]. 石油钻探技术,2017,45(5):23–29.
XI Fengliang, XU Chaoyang, MA Jinshan, et al. Design and numerical simulation of an automatic diverter manifold in managed pressure drilling[J]. Petroleum Drilling Techniques, 2017, 45(5): 23–29.
|
[27] |
中国石化报. 中国石化十大石油工程技术公开[EB/OL]. (2024-08-07)[2024-08-07]. https://mp.weixin.qq.com/s?__biz=MjM5Nzc2Mzg1NA==&mid=2651437266&idx=1&sn=4f64983cb0473ad13538b90c578b7ff7&chksm=bcd25472a2a7dc4a7be5eec73b4abd970f59a9bd052db1a8aea7c216b5d582c069459c8d7d93&scene=27.
China Petrochemical News. Top 10 petroleum engineering technologies publicly issued by Sinopec[EB/OL]. (2024-08-07)[2024-08-07]. https://mp.weixin.qq.com/s?__biz=MjM5Nzc2Mzg1NA==&mid=2651437266&idx=1&sn=4f64983cb0473ad13538b90c578b7ff7&chksm=bcd25472a2a7dc4a7be5eec73b4abd970f59a9bd052db1a8aea7c216b5d582c069459c8d7d93&scene=27.
|
[28] |
VERMA R, MUTHAMIZHVENDAN V, GANESAN S, et al. Case study: first ever implementation of managed pressure drilling to drill exploratory and near wildcat well at ONGC Tripura Asset[R]. IPTC 22005, 2022.
|
[29] |
Halliburton. HalVue® real-time viewer[EB/OL]. [2024-08-20]. https://cdn.brandfolder.io/VUJJLY3X/at/fjkpmsk85t65zv4wkj95756/HalVue_Real-Time_Data_Viewer_H013581_-_DS.pdf.
|
[30] |
ROSTAMI S A, GUMUS F, SIMPKINS D, et al. New generation of MPD drilling software-from quantifying to control[R]. SPE 181694, 2016.
|
[31] |
ROSTAMI S A. Enhancing MPD functionality: successful application of adaptive intelligent drilling software in deepwater, offshore and onshore operations[R]. SPE 185287, 2017.
|
[32] |
eDrilling. eDrilling products[EB/OL]. [2024-08-20]. https://www.edrilling.no/products.
|
[33] |
eDrilling. Facilitating the best state-of-the art preparations and real time support for drilling operations[EB/OL]. [2024-08-20]. https://www.edrilling.no/Customer%20Success%20Examples/ai-in-wellconstruction.
|
[34] |
刘伟,韩霄松,付加胜,等. C/S架构的新型控压钻井计算模拟与控制软件[J]. 吉林大学学报(信息科学版),2024,42(4):637–644.
LIU Wei, HAN Xiaosong, FU Jiasheng, et al. Novel managed pressure drilling simulation and control software based on C/S architecture[J]. Journal of Jilin University(Information Science Edition), 2024, 42(4): 637–644.
|
[35] |
付加胜,刘伟,邹易,等. 新型控压钻井计算模型与模拟系统研究[C]//第一届“油气珠峰”论坛暨2023年钻井基础理论研讨会论文集. 北京:石油工业出版社,2024:10-22.
FU Jiasheng, LIU Wei, ZOU Yi, et al. Research on a novel managed pressure drilling calculation model and simulation system[C]//Proceedings of the First “Oil and Gas Mount Everest” Forum and 2023 Drilling Basic Theory Seminar. Beijing, Petroleum Industry Press, 2024: 10-22.
|
[36] |
FU Jiasheng, LIU Wei, ZHENG Xiangyu, et al. Transfer forest: a deep forest model based on transfer learning for early drilling kick detection[J]. Energies, 2023, 16(5): 2100. doi: 10.3390/en16052100
|
[37] |
LIU Wei, FU Jiasheng, LIANG Yanchun, et al. A well-overflow prediction algorithm based on semi-supervised learning[J]. Energies, 2022, 15(12): 4324. doi: 10.3390/en15124324
|
[38] |
YI Wan, LIU Wei, FU Jiasheng, et al. An improved transformer framework for well-overflow early detection via self-supervised learning[J]. Energies, 2022, 15(23): 8799. doi: 10.3390/en15238799
|
[1] | SHU Yiyong, SUN Jun, ZENG Dong, XU Sixu, ZHOU Huaan, XI Yunfei. Study and Field Test of Drilling Fluid with Constant Rheology at High Temperature in West Yueman Block, Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 39-45. DOI: 10.11911/syztjs.2021037 |
[2] | WANG Tao, LIU Fengbao, LUO Wei, YAN Zhihang, LU Haiying, GUO Bin. The Technical Advance and Development Suggestions for Leakage Prevention and Plugging Technologies in the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 28-33. DOI: 10.11911/syztjs.2020080 |
[3] | ZHANG Xiong, YU Jin, MAO Jun, LIU Zulei. High-Performance Oil-Based Drilling Fluid Technology for Horizontal Wells in the Madong Oilfield, Junggar Basin[J]. Petroleum Drilling Techniques, 2020, 48(6): 21-27. DOI: 10.11911/syztjs.2020106 |
[4] | PENG Qi, ZHOU Yingcao, ZHOU Bo, LIU Chuanfu, LIU Yu. Development and Field Test of a Non-Planar Cutter PDC Bit with Convex Ridges[J]. Petroleum Drilling Techniques, 2020, 48(2): 49-55. DOI: 10.11911/syztjs.2020035 |
[5] | WANG Jianhua, YAN Lili, XIE Sheng, ZHANG Jiaqi, YANG Haijun. Oil-Based Drilling Fluid Technology for High Pressure Brine Layer in Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 29-33. DOI: 10.11911/syztjs.2020007 |
[6] | LIU Wei, ZHOU Yingcao, SHI Xitian, WANG Ying, LEI Wanneng, LI Mu. Precise Managed Pressure Drilling Technology for Ultra-High Pressure Brine Layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23-28. DOI: 10.11911/syztjs.2020034 |
[7] | TENG Xueqing, SUN Baojiang, ZHANG Yaoming, WANG Zhiyuan, LIU Hongtao, LYU Kaihe. A Five-Step Bullheading Killing Well Control Method for Fractured Formations without a Safety Pressure Window[J]. Petroleum Drilling Techniques, 2018, 46(6): 20-25. DOI: 10.11911/syztjs.2018157 |
[8] | SHU Man, ZHAO Mingkun, XU Mingbiao. Plugging while Drilling Technology Using Oil-Based Drilling Fluid in Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2017, 45(3): 21-26. DOI: 10.11911/syztjs.201703004 |
[9] | LI Ning, ZHOU Xiaojun, ZHOU Bo, YANG Chengxin, BAI Dengxiang, HE Shiming. Technologies for Fast Drilling Ultra-Deep Wells in the HLHT Block, Tarim Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 10-14. DOI: 10.11911/syztjs.201702002 |
[10] | Song Zhonghua, Zhang Shicheng, Wang Tengfei, Shen Jianxin, Duan Yuming, Liu Lanying. Downhole Throttling Technology for Gas Hydrate Prevention in Deep Gas Wells of Tarim Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(2): 91-96. DOI: 10.3969/j.issn.1001-0890.2014.02.018 |
1. |
刘望,郭朝辉,蒋子璇,管锋,田海锋,李梓睿,夏雨生. 高速旋冲钻磨水泥塞提速机理及效率研究. 石油机械. 2025(04): 17-23 .
![]() | |
2. |
田雨,张昕,张鹏翔,孙耀宁,许晨星,宋西岩. 冲击频率可调的钻井提速工具结构设计与试验. 石油机械. 2024(02): 36-43 .
![]() | |
3. |
张诗达,朱勇,高强,苏红. 旋冲钻井技术研究现状与展望. 排灌机械工程学报. 2024(05): 497-507 .
![]() | |
4. |
孙养清,易先中,万继方,易军,吴霁薇,刁斌斌,陈志湘. 机械式复合冲击器的工作特性分析. 石油机械. 2024(06): 29-37+108 .
![]() | |
5. |
陈炼,宋朝晖,王新东,张武涛,谢正森,粟籽华. 单牙轮钻头楔形牙齿偏转角优化方法. 石油钻探技术. 2023(01): 57-61 .
![]() | |
6. |
张文波,史怀忠,席传明,张楠,熊超,陈振良. 锥形PDC齿和常规PDC齿混合切削破岩试验研究. 石油机械. 2023(03): 33-39 .
![]() | |
7. |
闫炎,韩礼红,刘永红,杨尚谕,曹婧,牟易升. 全尺寸PDC钻头旋转冲击破岩过程数值模拟. 石油机械. 2023(06): 36-42 .
![]() | |
8. |
何超,邓虎,罗祝涛,李枝林,徐建超. 扭力冲击器流体仿真优化与试验. 钻采工艺. 2023(04): 26-32 .
![]() | |
9. |
王勇军,刘刚,佟铮,赵长亮,郑宇轩,冯守涛. 旋冲螺杆钻具在硬岩地热钻探中的应用研究. 钻探工程. 2023(05): 146-152 .
![]() | |
10. |
毛良杰,马茂原,刘立鹏,张伟,陈春宇. 扭力冲击器对钻柱黏滑振动的影响分析. 断块油气田. 2022(04): 545-551 .
![]() | |
11. |
王建云,韩涛,赵宽心,张立军,席宝滨,叶翔. 塔深5井超深层钻井关键技术. 石油钻探技术. 2022(05): 27-33 .
![]() | |
12. |
刘建华,令文学,王恒. 非平面三棱形PDC齿破岩机理研究与现场试验. 石油钻探技术. 2021(05): 46-50 .
![]() |