Citation: | PENG Qi, ZHOU Yingcao, ZHOU Bo, LIU Chuanfu, LIU Yu. Development and Field Test of a Non-Planar Cutter PDC Bit with Convex Ridges[J]. Petroleum Drilling Techniques, 2020, 48(2): 49-55. DOI: 10.11911/syztjs.2020035 |
When conventional PDC bits are used to drill into the massive gravel layer at the Kuqa Piedmont, challenges such as low rock breaking efficiency, low ROP and long drilling cycle are encountered. A deeper analysis concluded that the large impact of gravels on the planar tooth of conventional PDC bits, as well as the further tooth breakage or severe wear are the main reasons of low penetration rate. Therefore, a convex ridge non-planar cutter was designed, and the matched PDC bit was developed to transform the traditional face cutting into linear fracturing and face crushing methods, which greatly improves the rock breaking efficiency of bit. The lab tests suggest that the convex ridge non-planar cutter had good impact resistance and anti-abrasive performance, and the impact resistance was 10 times that of the planar tooth. Two convex ridge non-planar tooth PDC bits have been tested in the gravel interval of a well in the Bozi Block, creating a record of the highest ROP and the longest single bit footage in this block. Compared with the conventional PDC bits in adjacent wells, the footage was increased by more than 1.5 times, and the average ROP increased over 64%, with obvious effect of raising the penetration rate. Research and tests indicated that the ridge non-planar cutter PDC bit could meet the requirements of drilling in the massive gravel layer of Kuqa Piedmont effectively, and provide technical supports for the efficient exploration & development of deep natural gas in this area.
[1] |
杨庆理. PDC钻头在井底的涡动分析研究[J]. 石油矿场机械, 2007, 36(5): 34–36. doi: 10.3969/j.issn.1001-3482.2007.05.009
YANG Qingli. The study of the PDC anti-whirling[J]. Oil Field Equipment, 2007, 36(5): 34–36. doi: 10.3969/j.issn.1001-3482.2007.05.009
|
[2] |
王福修, 田京燕. PDC钻头稳定性技术研究[J]. 石油矿场机械, 2002, 31(2): 7–10. doi: 10.3969/j.issn.1001-3482.2002.02.003
WANG Fuxiu, TIAN Jingyan. The technology study on PDC bit stability[J]. Oil Field Equipment, 2002, 31(2): 7–10. doi: 10.3969/j.issn.1001-3482.2002.02.003
|
[3] |
李百胜, 孙明光. 用于含砾石且软硬交错地层的新型PDC钻头设计[J]. 石油机械, 2004, 32(9): 32–34. doi: 10.3969/j.issn.1001-4578.2004.09.011
LI Baisheng, SUN Mingguang. The design of PDC bit for multi-interbedded and gravel formation[J]. China Petroleum Machinery, 2004, 32(9): 32–34. doi: 10.3969/j.issn.1001-4578.2004.09.011
|
[4] |
孙明光, 张云连, 马德坤. 适合多夹层地层PDC钻头设计及应用[J]. 石油学报, 2001, 22(5): 95–99. doi: 10.3321/j.issn:0253-2697.2001.05.019
SUN Mingguang, ZHANG Yunlian, MA Dekun. Design and application of the PDC bit suited for multi-interbedded formation[J]. Acta Petrolei Sinica, 2001, 22(5): 95–99. doi: 10.3321/j.issn:0253-2697.2001.05.019
|
[5] |
张进双, 张增宝, 王学才. 刀翼式孕镶金刚石钻头设计及在哈山101井的应用[J]. 石油钻探技术, 2019, 47(5): 57–61.
ZHANG Jinshuang, ZHANG Zengbao, WANG Xuecai. The design of blade type diamond-impregnated bit and it’s application in Well Hashan 101[J]. Petroleum Drilling Techniques, 2019, 47(5): 57–61.
|
[6] |
王滨, 李军, 邹德永, 等. 适合强研磨性硬地层PDC-金刚石孕镶块混合钻头设计与应用[J]. 特种油气藏, 2018, 25(1): 169–176. doi: 10.3969/j.issn.1006-6535.2018.01.035
WANG Bin, LI Jun, ZOU Deyong, et al. Design and application of a PDC hybrid drill bit with impregnated diamond insert for the hard formation with strong abrasivity[J]. Special Oil & Gas Reservoirs, 2018, 25(1): 169–176. doi: 10.3969/j.issn.1006-6535.2018.01.035
|
[7] |
孙明光. 新型PDC钻头设计与现场试验[J]. 石油钻采工艺, 2006, 28(2): 21–24. doi: 10.3969/j.issn.1000-7393.2006.02.007
SUN Mingguang. Design and test of PDC bit with new structure[J]. Oil Drilling & Production Technology, 2006, 28(2): 21–24. doi: 10.3969/j.issn.1000-7393.2006.02.007
|
[8] |
刘杰, 樊冀安. PDC钻头复合片磨损规律研究[J]. 石油钻探技术, 1999, 27(1): 37–39. doi: 10.3969/j.issn.1001-0890.1999.01.016
LIU Jie, FAN Ji'an. Study on PDC cutters wearing mechanism[J]. Petroleum Drilling Techniques, 1999, 27(1): 37–39. doi: 10.3969/j.issn.1001-0890.1999.01.016
|
[9] |
王滨, 李军, 邹德永, 等. 强研磨性硬岩PDC钻头磨损机理及磨损分布规律研究[J]. 特种油气藏, 2018, 25(4): 149–153. doi: 10.3969/j.issn.1006-6535.2018.04.030
WANG Bin, LI Jun, ZOU Deyong, et al. Mechanisms and distribution pattern of abrasions on PDC bits for highly-abrasive hard-rock[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 149–153. doi: 10.3969/j.issn.1006-6535.2018.04.030
|
[10] |
马清明, 王瑞和. PDC切削齿破岩受力的试验研究[J]. 中国石油大学学报(自然科学版), 2006, 30(2): 45–47.
MA Qingming, WANG Ruihe. Experimental study on force of PDC cutter breaking rock[J]. Journal of China University of Petroleum (Edition of Natural Science), 2006, 30(2): 45–47.
|
[11] |
梁尔国, 李子丰, 邹德永. PDC切削齿受力的试验研究[J]. 石油机械, 2009, 37(11): 12–15.
LIANG Erguo, LI Zifeng, ZOU Deyong. Experimental study on force of PDC cutter[J]. China Petroleum Machinery, 2009, 37(11): 12–15.
|
[12] |
许爱. PDC钻头切削齿破岩载荷规律的分析[J]. 探矿工程(岩土钻掘工程), 2006, 33(7): 59–61.
XU Ai. Analysis on load pattern of rock breaking of PDC bit cutter[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2006, 33(7): 59–61.
|
[13] |
杨先伦, 何世明, 王涛. 高频扭转冲击钻井PDC钻头切削齿瞬间碰撞破岩分析[J]. 断块油气田, 2018, 25(6): 789–792.
YANG Xianlun, HE Shiming, WANG Tao. Analysis of instantaneous impact rock breaking of PDC cutting tooth for high frequency torsional percussion drilling[J]. Fault-Block Oil & Gas Field, 2018, 25(6): 789–792.
|
[14] |
田丰, 杨迎新, 任海涛, 等. PDC钻头切削齿工作区域及切削量的分析理论和计算方法[J]. 钻采工艺, 2009, 32(2): 51–53. doi: 10.3969/j.issn.1006-768X.2009.02.018
TIAN Feng, YANG Yingxin, REN Haitao, et al. Analytical theory and computational method of contact area and cutting volume of PDC bit cutters[J]. Drilling & Production Technology, 2009, 32(2): 51–53. doi: 10.3969/j.issn.1006-768X.2009.02.018
|
[15] |
肖仕红, 杨迎新. PDC钻头在复杂运动条件下钻进过程仿真[J]. 石油矿场机械, 2005, 34(2): 40–42. doi: 10.3969/j.issn.1001-3482.2005.02.010
XIAO Shihong, YANG Yingxin. The computer simulation of the drilling progress between the PDC bit and rock[J]. Oil Field Equipment, 2005, 34(2): 40–42. doi: 10.3969/j.issn.1001-3482.2005.02.010
|
[16] |
任海涛, 杨迎新, 陈炼, 等. PDC钻头钻进仿真系统数字化方法研究[J]. 西南石油大学学报(自然科学版), 2010, 32(5): 150–154.
REN Haitao, YANG Yingxin, CHEN Lian, et al. Research on the digital method of the PDC bit drilling progress simulation system[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2010, 32(5): 150–154.
|
[17] |
罗德, 黎明发, 吴波, 等. 聚晶金刚石复合片钻头钻进岩层的仿真研究[J]. 武汉理工大学学报, 2010, 32(10): 112–115. doi: 10.3963/j.issn.1671-4431.2010.10.026
LUO De, LI Mingfa, WU Bo, et al. Simulation of the drilling process of polycrystalline diamond compact drilling bit[J]. Journal of Wuhan University of Technology, 2010, 32(10): 112–115. doi: 10.3963/j.issn.1671-4431.2010.10.026
|
[18] |
谢晗, 况雨春, 秦超. 非平面PDC切削齿破岩有限元仿真及试验[J]. 石油钻探技术, 2019, 47(5): 69–73. doi: 10.11911/syztjs.2019043
XIE Han, KUANG Yuchun, QIN Chao. The finite element simulation and test of rock Bbreaking by non-planar PDC cutting cutter[J]. Petroleum Drilling Techniques, 2019, 47(5): 69–73. doi: 10.11911/syztjs.2019043
|
[19] |
伍开松, 柯行, 龙巾帼. 热-结构耦合PDC单齿破岩温升规律研究[J]. 石油机械, 2013, 41(4): 24–26. doi: 10.3969/j.issn.1001-4578.2013.04.006
WU Kaisong, KE Xing, LONG Jinguo. Research on the temperature rise law for single tooth rock-breaking of thermal structure coupling PDC bit[J]. China Petroleum Machinery, 2013, 41(4): 24–26. doi: 10.3969/j.issn.1001-4578.2013.04.006
|
[20] |
尤明庆, 华安增. 岩石试样破坏过程的能量分析[J]. 岩石力学与工程学报, 2002, 21(6): 778–781. doi: 10.3321/j.issn:1000-6915.2002.06.004
YOU Mingqing, HUA Anzeng. Energy analysis of failure process of rock specimen[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 778–781. doi: 10.3321/j.issn:1000-6915.2002.06.004
|
[21] |
谢和平, 彭瑞东, 鞠杨, 等. 岩石破坏的能量分析初探[J]. 岩石力学与工程学报, 2005, 24(15): 2603–2608. doi: 10.3321/j.issn:1000-6915.2005.15.001
XIE Heping, PENG Ruidong, JU Yang, et al. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2603–2608. doi: 10.3321/j.issn:1000-6915.2005.15.001
|
[1] | SHU Yiyong, SUN Jun, ZENG Dong, XU Sixu, ZHOU Huaan, XI Yunfei. Study and Field Test of Drilling Fluid with Constant Rheology at High Temperature in West Yueman Block, Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 39-45. DOI: 10.11911/syztjs.2021037 |
[2] | WANG Tao, LIU Fengbao, LUO Wei, YAN Zhihang, LU Haiying, GUO Bin. The Technical Advance and Development Suggestions for Leakage Prevention and Plugging Technologies in the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 28-33. DOI: 10.11911/syztjs.2020080 |
[3] | TENG Xueqing, LIU Hongtao, LI Ning, WANG Tianbo, RU Dajun, DONG Ren. Difficulties and Technical Countermeasures for Automatic Vertical Drilling in Ultra-Deep Wells in the Bozi Block of the Tarim Basin[J]. Petroleum Drilling Techniques, 2021, 49(1): 11-15. DOI: 10.11911/syztjs.2020113 |
[4] | WANG Jianhua, YAN Lili, XIE Sheng, ZHANG Jiaqi, YANG Haijun. Oil-Based Drilling Fluid Technology for High Pressure Brine Layer in Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 29-33. DOI: 10.11911/syztjs.2020007 |
[5] | LIU Wei, ZHOU Yingcao, SHI Xitian, WANG Ying, LEI Wanneng, LI Mu. Precise Managed Pressure Drilling Technology for Ultra-High Pressure Brine Layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23-28. DOI: 10.11911/syztjs.2020034 |
[6] | WANG Xuelong, HE Xuanpeng, LIU Xianfeng, CHENG Tianhui, LI Ruiliang, FU Qiang. Key Drilling Technologies for Complex Ultra-Deep Wells in the Tarim Keshen 9 Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(1): 15-20. DOI: 10.11911/syztjs.2020028 |
[7] | TENG Xueqing, SUN Baojiang, ZHANG Yaoming, WANG Zhiyuan, LIU Hongtao, LYU Kaihe. A Five-Step Bullheading Killing Well Control Method for Fractured Formations without a Safety Pressure Window[J]. Petroleum Drilling Techniques, 2018, 46(6): 20-25. DOI: 10.11911/syztjs.2018157 |
[8] | LI Ning, ZHOU Xiaojun, ZHOU Bo, YANG Chengxin, BAI Dengxiang, HE Shiming. Technologies for Fast Drilling Ultra-Deep Wells in the HLHT Block, Tarim Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 10-14. DOI: 10.11911/syztjs.201702002 |
[9] | Li Ning, Hu Guanghui, Li Qiang, Ai Zhengqing, Li Zaoyuan. Application of Plug-Drilling-Free Selective Completion Technology in the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(5): 68-73. DOI: 10.11911/syztjs.201405012 |
[10] | Song Zhonghua, Zhang Shicheng, Wang Tengfei, Shen Jianxin, Duan Yuming, Liu Lanying. Downhole Throttling Technology for Gas Hydrate Prevention in Deep Gas Wells of Tarim Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(2): 91-96. DOI: 10.3969/j.issn.1001-0890.2014.02.018 |
1. |
陈允禄,李玮健,冯伟风. 净浆搅拌转速对混凝土性能的影响. 建材世界. 2024(01): 30-33 .
![]() | |
2. |
蒋祥光,许明标. 纳米氧化铝对油井水泥基复合材料力学性能的影响. 当代化工. 2023(05): 1252-1255 .
![]() | |
3. |
唐凯,陈小荣,李志宏. 表层套管固井低剪切速率对水泥浆性能的影响——以厄瓜多尔安第斯区块为例. 石油地质与工程. 2023(06): 85-89+96 .
![]() | |
4. |
宋建建,许明标,王晓亮,张敏,胡顺,杜佳琪. 胶乳粉固井水泥浆体系研究与应用. 油田化学. 2021(03): 406-411 .
![]() | |
5. |
徐力群,张兴国,王银东,金也,丁辉,刘增,刘开强,郭小阳. 低返速固井对油井水泥浆性能的影响. 钻井液与完井液. 2019(01): 70-76 .
![]() | |
6. |
寇云鹏,齐兆军,宋泽普,杜加法,杨纪光. 全尾砂高浓度充填料浆流变特性试验研究. 矿业研究与开发. 2018(12): 32-35 .
![]() | |
7. |
李建山. 泾河油田水平井固井难点与对策研究. 石油钻探技术. 2017(06): 19-23 .
![]() | |
8. |
刘振通,党冬红,和建勇,王莹,宋元洪,郭文猛,张玉鹏,王洪峰. 委内瑞拉低压高渗漏地层小间隙尾管固井技术. 钻井液与完井液. 2017(06): 83-88 .
![]() |