ZHOU Shiming, LU Peiqing. Advancements and prospects of monitoring and intelligent perception technology for wellbore sealing integrity [J]. Petroleum Drilling Techniques, 2024, 52(5):35−41. DOI: 10.11911/syztjs.2024097
Citation: ZHOU Shiming, LU Peiqing. Advancements and prospects of monitoring and intelligent perception technology for wellbore sealing integrity [J]. Petroleum Drilling Techniques, 2024, 52(5):35−41. DOI: 10.11911/syztjs.2024097

Advancements and Prospects of Monitoring and Intelligent PerceptionTechnology for Wellbore Sealing Integrity

More Information
  • Received Date: August 09, 2024
  • Revised Date: September 08, 2024
  • Accepted Date: September 17, 2024
  • Available Online: September 06, 2024
  • A comprehensive knowledge of wellbore sealing integrity evolution information during the oil and gas well production is the foundation to ensure the safe and efficient development of oil and gas resources. Traditional logging technology can not meet the needs of monitoring the integrity of the wellbore throughout the whole life cycle, and it is imperative to realize the efficient integration of the wellbore, formation information perception, and digital technology. Therefore, with the in-situ perception technology of wellbore integrity as the main breakthrough, the investigation has been carried out in China and overseas in terms of acoustic monitoring, optical fiber sensing, self-sensing cement slurry, and permanent downhole testing equipment. Based on summarizing the advancements of wellbore sealing integrity monitoring and intelligent perception technology in China and abroad, the existing disadvangates and problems were analyzed. In addition, the development prospect was also made from four aspects: acoustic monitoring technology, distributed optical fiber sensing monitoring technology, intelligent cement slurry system, and permanent downhole testing equipment, so as to build a digital wellbore, accurately understand the dynamic information of the wellbore condition of oil and gas wells in real time, and promote the safe, efficient, and intelligent upgrading of oil and gas engineering .

  • [1]
    丁士东,陆沛青,郭印同,等. 复杂环境下水泥环全生命周期密封完整性研究进展与展望[J]. 石油钻探技术,2023,51(4):104–113.

    DING Shidong, LU Peiqing, GUO Yintong, et al. Progress and prospect on the study of full life cycle sealing integrity of cement sheath in complex environments[J]. Petroleum Drilling Techniques, 2023, 51(4): 104–113.
    [2]
    曾义金. 中国石化深层超深层油气井固井技术新进展与发展建议[J]. 石油钻探技术,2023,51(4):66–73. doi: 10.11911/syztjs.2023035

    ZENG Yijin. Novel advancements and development suggestions of cementing technologies for deep and ultra-deep wells of Sinopec[J]. Petroleum Drilling Techniques, 2023, 51(4): 66–73. doi: 10.11911/syztjs.2023035
    [3]
    贾承造,张永峰,赵霞. 中国天然气工业发展前景与挑战[J]. 天然气工业,2014,34(2):1–11. doi: 10.3787/j.issn.10000976.2014.02.001

    JIA Chengzao, ZHANG Yongfeng, ZHAO Xia. Prospects of and challenges to natural gas industry development in China[J]. Natural Gas Industry, 2014, 34(2): 1–11. doi: 10.3787/j.issn.10000976.2014.02.001
    [4]
    李剑,佘源琦,高阳,等. 中国陆上深层—超深层天然气勘探领域及潜力[J]. 中国石油勘探,2019,24(4):403–417.

    LI Jian, SHE Yuanqi, GAO Yang, et al. Onshore deep and ultra-deep natural gas exploration fields and potentials in China[J]. China Petroleum Exploration, 2019, 24(4): 403–417.
    [5]
    祝效华,李瑞,刘伟吉,等. 深层页岩气水平井高效破岩提速技术发展现状[J]. 西南石油大学学报(自然科学版),2023,45(4):1–18.

    ZHU Xiaohua, LI Rui, LIU Weiji, et al. Development status of high-efficiency rock-breaking and speed-increasing technologies for deep shale gas horizontal wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(4): 1–18.
    [6]
    张锦宏,周爱照,成海,等. 中国石化石油工程技术新进展与展望[J]. 石油钻探技术,2023,51(4):149–158.

    ZHANG Jinhong, ZHOU Aizhao, CHENG Hai, et al. New progress and prospects for Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 149–158.
    [7]
    苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.
    [8]
    曾义金. 深层页岩气开发工程技术进展[J]. 石油科学通报,2019,4(3):233–241.

    ZENG Yijin. Progress in engineering technologies for the development of deep shale gas[J]. Petroleum Science Bulletin, 2019, 4(3): 233–241.
    [9]
    袁建强. 中国石化页岩气超长水平段水平井钻井技术新进展与发展建议[J]. 石油钻探技术,2023,51(4):81–87.

    YUAN Jianqiang. New progress and development proposals of Sinopec’s drilling technologies for ultra-long horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2023, 51(4): 81–87.
    [10]
    张茹,吕游,张泽天,等. 深地工程多维信息感知与智能建造的发展与展望[J]. 煤炭学报,2024,49(3):1259–1290.

    ZHANG Ru, LYU You, ZHANG Zetian, et al. Development and prospect of multidimensional information perception and intelligent construction in deep earth engineering[J]. Journal of China Coal Society, 2024, 49(3): 1259–1290.
    [11]
    张激扬,欧海晨,师国臣,等. 油水井井筒数字化、智能化构建分析[J]. 石油钻采工艺,2022,44(5):569–573.

    ZHANG Jiyang, OU Haichen, SHI Guochen, et al. Analysis on digital and intelligent construction of wellbore for oil and water wells[J]. Oil Drilling & Production Technology, 2022, 44(5): 569–573.
    [12]
    陈绍凯,安鹏,张能,等. 领域驱动设计在中国海油智能油田建设中的探索与实践[J]. 中国海上油气,2023,35(6):189–196.

    CHEN Shaokai, AN Peng, ZHANG Neng, et al. Exploration and practice of domain-driven design in the construction of CNOOC intelligent oilfield[J]. China Offshore Oil and Gas, 2023, 35(6): 189–196.
    [13]
    KHATRI D, BOTTIGLIERI A, DAS R, et al. Quantification of in-situ cement contamination by electromagnetic acoustic transducer technology: an integrated approach to improved zonal isolation[R]. SPE 187431, 2017.
    [14]
    PATTERSON D, INGRAM S, MATUSZYK P J, et al. Enhanced cement bond evaluation in thick casing utilizing guided acoustic modes generated by electromagnetic acoustic transducers[R]. OTC 27968, 2017.
    [15]
    AZIM M K, IQBAL P, EUIC I. All terrain efficient new electromagnetic cement evaluation tool; effectively defining cement sheath quality where evaluation was not possible[R]. SPE 183990, 2017.
    [16]
    PATTERSON D, BOLSHAKOV A, MATUSZYK P J. Utilization of electromagnetic acoustic transducers in downhole cement evaluation[J]. Petrophysics, 2015, 56(5): 479–492.
    [17]
    冉强,蔡键键. 测井技术在石油工程中的应用新进展[J]. 石化技术,2024,31(5):156–158.

    RAN Qiang, CAI Jianjian. New progress in the application of logging technology in petroleum engineering[J]. Petrochemical Industry Technology, 2024, 31(5): 156–158.
    [18]
    尹成芳,侯亮,郭晓霞. 2022国外测井技术发展现状与趋势[J]. 世界石油工业,2022,29(6):54–62.

    YIN Chengfang, HOU Liang, GUO Xiaoxia. Present status and trends in development of foreign well logging technologies in 2022[J]. World Petroleum Industry, 2022, 29(6): 54–62.
    [19]
    李晓蓉,刘旭丰,张毅,等. 基于分布式光纤声传感的油气井工程监测技术应用与进展[J]. 石油钻采工艺,2022,44(3):309–320.

    LI Xiaorong, LIU Xufeng, ZHANG Yi, et al. Application and progress of oil and gas well monitoring techniques based on distributed optical fiber sensing[J]. Oil Drilling & Production Technology, 2022, 44(3): 309–320.
    [20]
    王辉. 光纤分布式测量技术在页岩气产气剖面中的应用[J]. 石油机械,2022,50(8):110–117.

    WANG Hui. Application of distributed optical fiber measurement technology in shale gas production profile[J]. China Petroleum Machinery, 2022, 50(8): 110–117.
    [21]
    隋微波,温长云,孙文常,等. 水力压裂分布式光纤传感联合监测技术研究进展[J]. 天然气工业,2023,43(2):87–103.

    SUI Weibo, WEN Changyun, SUN Wenchang, et al. Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J]. Natural Gas Industry, 2023, 43(2): 87–103.
    [22]
    罗红文,张琴,李海涛,等. 基于分布式光纤测温的致密油水平井产出剖面解释方法[J]. 特种油气藏,2023,30(4):104–112. doi: 10.3969/j.issn.1006-6535.2023.04.013

    LUO Hongwen, ZHANG Qin, LI Haitao, et al. Tight oil horizontal well production profile interpretation method based on distributed temperature sensing[J]. Special Oil & Gas Reservoirs, 2023, 30(4): 104–112. doi: 10.3969/j.issn.1006-6535.2023.04.013
    [23]
    孙琪真,范存政,李豪,等. 光纤分布式声波传感技术在石油行业的研究进展[J]. 石油物探,2022,61(1):50–59.

    SUN Qizhen, FAN Cunzheng, LI Hao, et al. Progress of research on optical fiber distributed acoustic sensing technology in petroleum industry[J]. Geophysical Prospecting for Petroleum, 2022, 61(1): 50–59.
    [24]
    张旭苹,张益昕,王亮,等. 分布式光纤传感技术研究和应用的现状及未来[J]. 光学学报,2024,44(1):3–65.

    ZHANG Xuping, ZHANG Yixin, WANG Liang, et al. Current status and future of research and applications for distributed fiber optic sensing technology[J]. Acta Optica Sinica, 2024, 44(1): 3–65.
    [25]
    ELSHAHAWI H, HUANG Shan, POLLOCK J, et al. Novel smart cement for improved well integrity evaluation[R]. SPWLA 2018, 2018.
    [26]
    刘炜辰. 应用智能水泥提升井筒完整性测井响应能力[J]. 石油管材与仪器,2020,6(2):88–92.

    LIU Weichen. Application of smart cement to improve response of well integrity logging[J]. Petroleum Tubular Goods & Instruments, 2020, 6(2): 88–92.
    [27]
    欧进萍,关新春,李惠. 应力自感知水泥基复合材料及其传感器的研究进展[J]. 复合材料学报,2006,23(4):1–8. doi: 10.3321/j.issn:1000-3851.2006.04.001

    OU Jinping, GUAN Xinchun, LI Hui. State-of-the-art of stress-sensing cement composite material and sensors[J]. Acta Materiae Compositae Sinica, 2006, 23(4): 1–8. doi: 10.3321/j.issn:1000-3851.2006.04.001
    [28]
    丁思齐,韩宝国,欧进萍. 本征自感知混凝土及其智能结构[J]. 工程力学,2022,39(3):1–10. doi: 10.6052/j.issn.1000-4750.2021.06.ST02

    DING Siqi, HAN Baoguo, OU Jinping. Intrinsic self-sensing concrete for smart structures[J]. Engineering Mechanics, 2022, 39(3): 1–10. doi: 10.6052/j.issn.1000-4750.2021.06.ST02
    [29]
    QIN Hanyao, DING Siqi, ASHOUR A, et al. Revolutionizing infrastructure: the evolving landscape of electricity-based multifunctional concrete from concept to practice[J]. Progress in Materials Science, 2024, 145: 101310. doi: 10.1016/j.pmatsci.2024.101310
    [30]
    ZHANG Bing, XIONG Jiyou, ZHANG Ningsheng, et al. Improved method of processing downhole pressure data on smart wells[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1115–1126. doi: 10.1016/j.jngse.2016.08.002
    [31]
    OSSAI C I. Modified spatio-temporal neural networks for failure risk prognosis and status forecasting of permanent downhole pressure gauge[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106496. doi: 10.1016/j.petrol.2019.106496
  • Related Articles

    [1]QIN Yonghe. Progress and Development Strategies of Sliding and Rotary Steerable Drilling Technologies[J]. Petroleum Drilling Techniques, 2024, 52(6): 1-9. DOI: 10.11911/syztjs.2024105
    [2]YAN Na. Technological Progress and Development Suggestions on Integrated Development of Depleted Oil & Gas Reservoirs and New Energy[J]. Petroleum Drilling Techniques, 2024, 52(3): 146-152. DOI: 10.11911/syztjs.2024058
    [3]YUAN Jianqiang. New Progress and Development Proposals of Sinopec’s Drilling Technologies for Ultra-Long Horizontal Shale Gas Wells[J]. Petroleum Drilling Techniques, 2023, 51(4): 81-87. DOI: 10.11911/syztjs.2023030
    [4]ZENG Yijin. Novel Advancements and Development Suggestions of Cementing Technologies for Deep and Ultra-Deep Wells of Sinopec[J]. Petroleum Drilling Techniques, 2023, 51(4): 66-73. DOI: 10.11911/syztjs.2023035
    [5]LU Baoping, HOU Xutian, KE Ke. Achievements and Developing Suggestions of Sinopec’s Drilling Technologies in Arctic Sea[J]. Petroleum Drilling Techniques, 2021, 49(3): 1-10. DOI: 10.11911/syztjs.2021046
    [6]WANG Tao, LIU Fengbao, LUO Wei, YAN Zhihang, LU Haiying, GUO Bin. The Technical Advance and Development Suggestions for Leakage Prevention and Plugging Technologies in the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 28-33. DOI: 10.11911/syztjs.2020080
    [7]LU Baoping. New Progress and Development Proposals of Sinopec’s PetroleumEngineering Technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1-10. DOI: 10.11911/syztjs.2021001
    [8]DING Shidong, ZHAO Xiangyang. New Progress and Development Suggestions for Drilling and Completion Technologies in Sinopec Key Exploration Areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11-20. DOI: 10.11911/syztjs.2020069
    [9]HAN Laiju. The Latest Progress and Suggestions of Drilling and Completion Techniques in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(1): 1-9. DOI: 10.11911/syztjs.201701001
    [10]YANG Zhiguang. The Latest Proposals for the Advancement and Development of Drilling and Completion Technology in the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(6): 1-10. DOI: 10.11911/syztjs.201606001
  • Cited by

    Periodical cited type(2)

    1. 郭少坤,李军,连威,曹伟. CCUS地质封存井筒完整性研究进展及发展建议. 石油钻探技术. 2025(01): 144-154 . 本站查看
    2. 朱雷,潘金林,陈雪莲,马锐,田隆梅,周浩栋. 套管和水泥环尺寸对CBL/VDL测井套管波的影响研究. 石油钻探技术. 2025(01): 136-143 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (305) PDF downloads (153) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return