WANG Guo, XU Boyue. The method to predict ROP of PDC bits based on fusion of theoretical model and machine learning [J]. Petroleum Drilling Techniques, 2024, 52(5):117−123. DOI: 10.11911/syztjs.2024094
Citation: WANG Guo, XU Boyue. The method to predict ROP of PDC bits based on fusion of theoretical model and machine learning [J]. Petroleum Drilling Techniques, 2024, 52(5):117−123. DOI: 10.11911/syztjs.2024094

The Method to Predict ROP of PDC Bits Based on Fusion of Theoretical Model and Machine Learning

More Information
  • Received Date: April 13, 2024
  • Revised Date: September 17, 2024
  • Accepted Date: October 07, 2024
  • Available Online: October 09, 2024
  • In order to improve the prediction accuracy of the rate of penetration (ROP) of polycrystalline diamond compact (PDC) bits and provide a basis for field engineers to guide drilling production, the energy parameters of downhole screw drilling tools, hydraulic rock breaking, and rotary impact drilling tools were comprehensively considered based on the Teale model. In addition, the concepts of PDC threshold weight on bit (WOB) and threshold torque were introduced, and the calculation methods of WOB and torque were corrected. The theoretical equation of ROP of composite specific energy was established. Based on the concept of ROP ratio, a prediction model of ROP based on deep fusion of theory and data was established. The results show that the model not only points out the correct theoretical direction but also comprehensively utilizes the advantages of data-driven learning, and it further improves the prediction accuracy of ROP of PDC bits. The prediction accuracy of the fusion method was verified by the actual drilling data in Shunbei, and the ROP can be greatly improved by the optimization analysis of the example. This method can provide an effective quantitative tool for optimizing drilling parameters, evaluating rock breaking effect of drill bits, and upgrading speed-up tools, which has important application value.

  • [1]
    杜镰,水运震,邢纪国,等. 钻井过程中的预测钻速的一种新方法[J]. 江汉石油学院学报,1995,17(3):49–53.

    DU Lian, SHUI Yunzhen, XING Jiguo, et al. A new method for predicting drilling velocities[J]. Journal of Jianghan Petroleum Institute, 1995, 17(3): 49–53.
    [2]
    WALKER B H, BLACK A D, KLAUBER W P, et al. Roller-bit penetration rate response as a function of rock properties and well depth[R]. SPE 15620, 1986.
    [3]
    郭永峰. 用回归分析法预测钻头最佳进尺及钻速[J]. 石油钻采工艺,1994,16(1):24–26.

    GUO Yongfeng. Projection of bit optimum footage and penetration rate with regression analysis method[J]. Oil Drilling & Production Technology, 1994, 16(1): 24–26.
    [4]
    YOUNG F S, Jr. Computerized drilling control[J]. Journal of Petroleum Technology, 1969, 21(4): 483–496. doi: 10.2118/2241-PA
    [5]
    HEGDE C, GRAY K. Evaluation of coupled machine learning models for drilling optimization[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 397–407. doi: 10.1016/j.jngse.2018.06.006
    [6]
    沙林秀,胥陈卓. 基于主成分分析的NCPSO-BP机械钻速预测[J]. 石油钻采工艺,2022,44(4):515–521.

    SHA Linxiu, XU Chenzhuo. Prediction of NCPSO-BP ROP based on principal component analysis[J]. Oil Drilling & Production Technology, 2022, 44(4): 515–521.
    [7]
    石祥超,王宇鸣,刘越豪,等. 关于人工智能方法用于钻井机械钻速预测的探讨[J]. 石油钻采工艺,2022,44(1):105–111.

    SHI Xiangchao, WANG Yuming, LIU Yuehao, et al. Discussion on the application of artificial intelligence method to the prediction of drilling machinery ROP[J]. Oil Drilling & Production Technology, 2022, 44(1): 105–111.
    [8]
    GAN Chao, CAO Weihua, WU Min, et al. Two-level intelligent modeling method for the rate of penetration in complex geological drilling process[J]. Applied Soft Computing, 2019, 80: 592–602.
    [9]
    张海军,张高峰,王国娜,等. 基于遗传算法优化随机森林模型的机械钻速分类预测方法[J]. 科学技术与工程,2022,22(35):15572–15578.

    ZHANG Haijun, ZHANG Gaofeng, WANG Guona, et al. Classification and prediction method for ROP based on genetic algorithm optimization random forest model[J]. Science Technology and Engineering, 2022, 22(35): 15572–15578.
    [10]
    张立刚,苗振华,黄小刚,等. 基于MEA-BP神经网络的钻井机械钻速预测[J]. 自动化与仪表,2022,37(11):87–92.

    ZHANG Ligang, MIAO Zhenhua, HUANG Xiaogang, et al. Prediction of drilling ROP based on MEA-BP neural network[J]. Automation & Instrumentation, 2022, 37(11): 87–92.
    [11]
    杨顺辉,郭珍珍,张洪宝,等. 基于集成迁移学习的机械钻速预测[J]. 计算机系统应用,2022,31(10):270–278.

    YANG Shunhui, GUO Zhenzhen, ZHANG Hongbao, et al. Rate of penetration prediction using ensemble transfer learning[J]. Computer Systems & Applications, 2022, 31(10): 270–278.
    [12]
    柳军,严顾鑫,郭晓强,等. 基于灰色-加权马尔可夫的机械钻速动态预测[J]. 系统科学与数学,2022,42(7):1727–1739.

    LIU Jun, YAN Guxin, GUO Xiaoqiang, et al. Dynamic prediction of drilling rate based on grey-weighted Markov[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(7): 1727–1739.
    [13]
    DUPRIEST F E, KOEDERITZ W L. Maximizing drill rates with real-time surveillance of mechanical specific energy[R]. SPE 92194, 2005.
    [14]
    TEALE R. The concept of specific energy in rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1965, 2(1): 57–73.
    [15]
    DUPRIEST F E. Comprehensive drill-rate management process to maximize rate of penetration[R]. SPE 102210, 2006.
    [16]
    陈志学,黎红胜,于文华,等. 虚拟强度指数优化钻井技术的发展与应用[J]. 断块油气田,2012,19(2):237–239.

    CHEN Zhixue, LI Hongsheng, YU Wenhua, et al. Development and application of VSI optimal drilling technology[J]. Fault-Block Oil & Gas Field, 2012, 19(2): 237–239.
    [17]
    曲思凝. 基于机械比能的地层物性和钻头效率随钻评价研究[D]. 大庆:东北石油大学,2019.

    QU Sining. Evaluation of formation properties and bit efficiency based on mechanical specific energy during drilling[D]. Daqing: Northeast Petroleum University, 2019.
    [18]
    苏超,李士斌,王昶皓,等. 修正机械比能模型的研究[J]. 石油化工高等学校学报,2018,31(5):71–76.

    SU Chao, LI Shibin, WANG Changhao, et al. Research on modification of mechanical specific energy model[J]. Journal of Petrochemical Universities, 2018, 31(5): 71–76.
    [19]
    崔猛,李佳军,纪国栋,等. 基于机械比能理论的复合钻井参数优选方法[J]. 石油钻探技术,2014,42(1):66–70. doi: 10.3969/j.issn.1001-0890.2014.01.013

    CUI Meng, LI Jiajun, JI Guodong, et al. Optimize method of drilling parameter of compound drilling based on mechanical specific energy theory[J]. Petroleum Drilling Techniques, 2014, 42(1): 66–70. doi: 10.3969/j.issn.1001-0890.2014.01.013
    [20]
    罗恒荣,索忠伟,谭勇,等. 防托压冲击器在盘40-斜501井的应用[J]. 石油钻探技术,2015,43(5):112–115.

    LUO Hengrong, SUO Zhongwei, TAN Yong, et al. Application of reducing WOB stack impactor in Well Pan 40-Xie 501[J]. Petroleum Drilling Techniques, 2015, 43(5): 112–115.
    [21]
    李广国,索忠伟,王甲昌,等. 射流冲击器配合PDC钻头在超深井中的应用[J]. 石油机械,2013,41(4):31–34.

    LI Guangguo, SUO Zhongwei, WANG Jiachang, et al. Application of jet hammer and PDC bit in superdeep well[J]. China Petroleum Machinery, 2013, 41(4): 31–34.
    [22]
    高德利,刘维,万绪新,等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023,51(4):20–34.

    GAO Deli, LIU Wei, WAN Xuxin, et al. Study on key factors influencing the ROP improvement of PDC bits[J]. Petroleum Drilling Techniques, 2023, 51(4): 20–34.
    [23]
    白彬珍,曾义金,芦鑫,等. 钻头破岩能量与岩石自适应匹配提速技术[J]. 石油钻探技术,2023,51(3):30–36.

    BAI Binzhen, ZENG Yijin, LU Xin, et al. An ROP improvement technology based on adaptive matching between the rock-breaking energy of bits and rock features[J]. Petroleum Drilling Techniques, 2023, 51(3): 30–36.
    [24]
    胡群爱,孙连忠,张进双,等. 硬地层稳压稳扭钻井提速技术[J]. 石油钻探技术,2019,47(3):107–112.

    HU Qunai, SUN Lianzhong, ZHANG Jinshuang, et al. Technology for drilling speed increase using stable WOB/torque for hard formations[J]. Petroleum Drilling Techniques, 2019, 47(3): 107–112.
    [25]
    CAICEDO H U, CALHOUN W M, EWY R T. Unique ROP predictor using bit-specific coefficient of sliding friction and mechanical efficiency as a function of confined compressive strength impacts drilling performance[R]. SPE 92576, 2005.
    [26]
    OLORUNTOBI O, BUTT S. Application of specific energy for lithology identification[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106402. doi: 10.1016/j.petrol.2019.106402
  • Cited by

    Periodical cited type(11)

    1. 卢永鑫,蒋明镜,王思远. 降压开采下深海能源土近井界面力学特性耦合分析. 岩土工程学报. 2025(06): 1298-1307 .
    2. 林栋,步玉环,柳华杰,郭胜来,路畅,徐鸿志. 水合物储层层内加固改造模拟试验装置研制及可行性验证. 中国石油大学学报(自然科学版). 2024(04): 115-122 .
    3. 万春燕,张贺恩,李磊,陈才虎,高妍,邸建伟,朱煜鑫. 海洋天然气水合物降压开采装备现状与技术探讨. 石油机械. 2024(10): 83-90 .
    4. 李舒展,杨进,朱国倞,李中,王宁. 深水钻井井口吸力锚最小下入深度预测方法. 石油钻探技术. 2023(02): 29-36 . 本站查看
    5. 武强,屈从涛,安冬. 采煤沉降区建筑结构稳定性分析. 能源与环保. 2023(04): 61-66 .
    6. 杨进,朱国倞,李舒展,李磊,管申,宋宇. 深海资源钻探吸力桩建井模式研究. 石油钻探技术. 2023(04): 134-139 . 本站查看
    7. 张逸群,胡萧,武晓亚,李根生,田守嶒,赵帅. 旋转射流冲蚀天然气水合物试验及数值模拟研究. 石油钻探技术. 2022(03): 24-33 . 本站查看
    8. 赛福拉·地力木拉提,董长银,李彦龙,陈强,刘晨枫,王浩宇. 砾石充填介质复合堵塞对天然气水合物储层产能的影响规律研究. 石油钻探技术. 2022(05): 94-101 . 本站查看
    9. 王贵,谭凯,曹成. 形状差异的岩屑颗粒沉降规律及曳力系数模型. 钻井液与完井液. 2022(06): 707-713 .
    10. 路保平,侯绪田,柯珂. 中国石化极地冷海钻井技术研究进展与发展建议. 石油钻探技术. 2021(03): 1-10 . 本站查看
    11. 刘煌,李瑞景,汪周华,王庆文. 酸性天然气生成水合物条件实验测定与应用. 特种油气藏. 2021(05): 154-160 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (203) PDF downloads (93) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return