LI Shuzhan, YANG Jin, ZHU Guojing, et al. Prediction of the minimum depth of setting for conductor anchor node in deep-water drilling [J]. Petroleum Drilling Techniques,2023, 51(2):29-36. DOI: 10.11911/syztjs.2022039
Citation: LI Shuzhan, YANG Jin, ZHU Guojing, et al. Prediction of the minimum depth of setting for conductor anchor node in deep-water drilling [J]. Petroleum Drilling Techniques,2023, 51(2):29-36. DOI: 10.11911/syztjs.2022039

Prediction of the Minimum Depth of Setting for Conductor Anchor Node in Deep-Water Drilling

More Information
  • Received Date: August 16, 2022
  • Revised Date: January 06, 2023
  • Available Online: December 25, 2022
  • When deep-water oil-gas fields adopt the conductor anchor node(CAN) for surface well construction, the wellhead may suffer from collapse, or the formation is too hard to run it in place. On the basis of analyzing the running principle of the CAN, a bearing capacity model of the CAN considering the effects of installation effect was established. In view of the most dangerous working conditions during the second spud cementing, the formula of maximum wellhead load during drilling was derived, and a depth of setting model for the CAN based on the bearing capacity was established by considering the safety factor of the pile foundation. Through the calculation model of the setting depth, the minimum depth of the setting in mud of the CAN of Well X in the South China Sea was 10.56 m. On the basis of the environmental parameters of Well X in the South China Sea, a finite element model was established by ABAQUS software, and the vertical bearing capacity of the wellhead suction pile was calculated to be 8 593.22 kN. At the same depth of setting in mud, the bearing capacity was theoretically calculated to be 8 063.59 kN, with an error of 6.16%, which reflected a high accuracy. The research revealed that the depth of setting model for the CAN based on the ultimate bearing capacity could accurately predict the minimum depth of setting of the CAN and effectively improve the safety of the subsea wellhead during the installation and drilling stages.

  • [1]
    呙义,高晓飞,易会安,等. 海上油田全寿命控水完井技术研究及现场试验[J]. 石油钻探技术,2021,49(6):93–98. doi: 10.11911/syztjs.2021120

    GUO Yi, GAO Xiaofei, YI Huian, et al. Research and field test on life-long water control completion technology in offshore oilfields[J]. Petroleum Drilling Techniques, 2021, 49(6): 93–98. doi: 10.11911/syztjs.2021120
    [2]
    牟汉生,陆文明,曹长霄,等. 深水浊积岩油藏提高采收率方法研究: 以安哥拉X油藏为例[J]. 石油钻探技术,2021,49(2):79–89. doi: 10.11911/syztjs.2021025

    MOU Hansheng, LU Wenming, CAO Changxiao, et al. Study on enhanced oil recovery method in deep-water turbidite reservoirs: a case study of X reservoir in Angola[J]. Petroleum Drilling Techniques, 2021, 49(2): 79–89. doi: 10.11911/syztjs.2021025
    [3]
    杨进,曹式敬. 深水石油钻井技术现状及发展趋势[J]. 石油钻采工艺,2008,30(2):10–13. doi: 10.3969/j.issn.1000-7393.2008.02.002

    YANG Jin, CAO Shijing. Current situation and developing trend of petroleum drilling technologies in deep water[J]. Oil Drilling & Production Technology, 2008, 30(2): 10–13. doi: 10.3969/j.issn.1000-7393.2008.02.002
    [4]
    杨进,李文龙,胡志强,等. 深水钻井水下井口稳定性研究进展[J]. 中国海上油气,2020,32(4):124–130.

    YANG Jin, LI Wenlong, HU Zhiqiang, et al. Research progresses on subsea wellhead stability of deep water drilling[J]. China Offshore Oil and Gas, 2020, 32(4): 124–130.
    [5]
    秦源康,刘康,陈国明,等. 海洋水合物地层导管吸力锚贯入安装负压窗口分析[J]. 石油钻采工艺,2021,43(6):737–743. doi: 10.13639/j.odpt.2021.06.008

    QIN Yuankang, LIU Kang, CHEN Guoming, et al. Negative pressure analysis for the penetration installation of conductor suction anchor in marine hydrate reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(6): 737–743. doi: 10.13639/j.odpt.2021.06.008
    [6]
    刘正,刘和兴,同武军,等. 深水吸力桩新型表层建井技术适应性分析[J]. 石油工业技术监督,2021,37(4):57–62. doi: 10.3969/j.issn.1004-1346.2021.04.016

    LIU Zheng, LIU Hexing, TONG Wujun, et al. Adaptability analysis of new constructing well technology with suction pile for deep-water wells[J]. Technology Supervision in Petroleum Industry, 2021, 37(4): 57–62. doi: 10.3969/j.issn.1004-1346.2021.04.016
    [7]
    李莅临,杨进,路保平,等. 深水水合物试采过程中地层沉降及井口稳定性研究[J]. 石油钻探技术,2020,48(5):61–68. doi: 10.11911/syztjs.2020095

    LI Lilin, YANG Jin, LU Baoping, et al. Research on stratum settlement and wellhead stability in deep water during hydrate production testing[J]. Petroleum Drilling Techniques, 2020, 48(5): 61–68. doi: 10.11911/syztjs.2020095
    [8]
    MACKERETH F J H. A portable core sampler for lake deposits[J]. Limnology and Oceanography, 1958, 3(2): 181–191. doi: 10.4319/lo.1958.3.2.0181
    [9]
    代恒军. 软土中吸力锚承载力分析[D]. 杭州: 浙江大学, 2008.

    DAI Hengjun. Ultimate capacity of suction anchor in clay[D]. Hangzhou: Zhejiang University, 2008.
    [10]
    ANDERSEN K H, LAURITZSEN R. Bearing capacity for foundations with cyclic loads[J]. Journal of Geotechnical Engineering, 1988, 114(5): 540–555. doi: 10.1061/(ASCE)0733-9410(1988)114:5(540)
    [11]
    CHENG Xinglei, WANG Jianhua, WANG Zhexue. Incremental elastoplastic FEM for simulating the deformation process of suction caissons subjected to cyclic loads in soft clays[J]. Applied Ocean Research, 2016, 59: 274–285. doi: 10.1016/j.apor.2016.05.015
    [12]
    刘永刚. 砂土中提高筒型基础承载力的应用研究[D]. 天津: 天津大学, 2010.

    LIU Yonggang. Applied research on improving bearing capacity of bucket foundation in sandy soil[D]. Tianjin: Tianjin University, 2010.
    [13]
    丁红岩,李占印. 粉土中吸力锚土塞形成模型试验[J]. 华北石油设计,1999(4):8–12.

    DING Hongyan, LI Zhanyin. Model test of soil plug formation in suction bucket in silt[J]. Huabei Petroleum Design, 1999(4): 8–12.
    [14]
    丁红岩,刘振勇,陈星. 吸力锚土塞在粉质粘土中形成的模型试验研究[J]. 岩土工程学报,2001,23(4):441–444. doi: 10.3321/j.issn:1000-4548.2001.04.012

    DING Hongyan, LIU Zhenyong, CHEN Xing. Model tests on soil plug formation in suction anchor for silty clay[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 441–444. doi: 10.3321/j.issn:1000-4548.2001.04.012
    [15]
    丁红岩,杜杰,戚兰. 吸力锚下沉过程中土塞高度计算[J]. 天津大学学报,2002,35(4):439–442. doi: 10.3969/j.issn.0493-2137.2002.04.006

    DING Hongyan, DU Jie, QI Lan. Height of soil-plug calculation in suction anchor[J]. Journal of Tianjin University, 2002, 35(4): 439–442. doi: 10.3969/j.issn.0493-2137.2002.04.006
    [16]
    丁红岩,张浦阳. 海上吸力锚负压下沉渗流场的特性分析[J]. 海洋技术,2003,22(4):44–48.

    DING Hongyan, ZHANG Puyang. Suction penetration seepage field's characteristics of suction anchor[J]. Ocean Technology, 2003, 22(4): 44–48.
    [17]
    API. API RP 2GEO:2011[Z]. 2014-10.
    [18]
    蒋杏雨. 宽浅式筒型基础在粉质粘土中的承载力研究[D]. 天津: 天津大学, 2015.

    JIANG Xingyu. Analysis on bearing capacity of wide and shallow bucket foundation in silty clay[D]. Tianjin: Tianjin University, 2015.
    [19]
    李广信, 张丙印, 于玉贞. 土力学[M]. 2版. 北京: 清华大学出版社, 2013: 298-302.

    LI Guangxin, ZHANG Bingyin, YU Yuzhen. Soil mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2013: 298-302.
    [20]
    蔺文龙. 安装效应对桩靴弹塑性力学行为的影响研究[D]. 重庆: 重庆大学, 2021.

    LIN Wenlong. Study on the influence of installation effect on elastoplastic behavior of spudcan[D]. Chongqing: Chongqing University, 2021.
    [21]
    秦伟. 海上风电大直径开口钢管桩锤击贯入过程研究[D]. 南京: 东南大学, 2020.

    QIN Wei. Impacted penetration progress researches of large-diameter open-ended steel pipe pile applied in offshore wind farm[D]. Nanjing: Southeast University, 2020.
    [22]
    周波,杨进,周建良,等. 深水喷射扰动对表层导管承载力的影响规律[J]. 中国海上油气,2016,28(1):98–102.

    ZHOU Bo, YANG Jin, ZHOU Jianliang, et al. Pattern of influence of disturbance caused by jetting on bearing capacity of surface conductor in deep water zones[J]. China Offshore Oil and Gas, 2016, 28(1): 98–102.
    [23]
    周波,杨进,刘正礼,等. 深水钻井表层导管静置时间窗口设计[J]. 石油勘探与开发,2014,41(2):234–238. doi: 10.11698/PED.2014.02.14

    ZHOU Bo, YANG Jin, LIU Zhengli, et al. Design of structure casing soaking time in deepwater drilling[J]. Petroleum Exploration and Development, 2014, 41(2): 234–238. doi: 10.11698/PED.2014.02.14
    [24]
    马宝金,魏士鹏,文江,等. 吸力桩基础设计与建造安装关键技术研究[J]. 石油工程建设,2021,47(2):82–86. doi: 10.3969/j.issn.1001-2206.2021.02.019

    MA Baojin, WEI Shipeng, WEN Jiang, et al. Design, fabrication and installation of suction pile foundation[J]. Petroleum Engineering Construction, 2021, 47(2): 82–86. doi: 10.3969/j.issn.1001-2206.2021.02.019
    [25]
    叶建良,秦绪文,谢文卫,等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质,2020,47(3):557–568. doi: 10.12029/gc20200301

    YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020, 47(3): 557–568. doi: 10.12029/gc20200301
  • Related Articles

    [1]LIU Xianghua, YU Yang, LIU Jingtao. Status Quo and Development Suggestions of Key Drilling Technologies for Extra-Deep Wells in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2024, 52(2): 72-77. DOI: 10.11911/syztjs.2024028
    [2]DING Shidong, PANG Wei, ZHOU Jun, YANG dekai, HE Tong. Staged Completion Technology for Ultra-Deep Wells in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2024, 52(2): 66-71. DOI: 10.11911/syztjs.2024046
    [3]HU Wenge. Progress and the Way Forward of Key Engineering Technologies for “Deep Underground Engineering” in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2024, 52(2): 58-65. DOI: 10.11911/syztjs.2024027
    [4]LI Fan, LI Daqi, JIN Junbin, ZHANG Dujie, FANG Junwei, WANG Weiji. Drilling Fluid Technology for Wellbore Stability of the Diabase Formation in Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 61-67. DOI: 10.11911/syztjs.2022041
    [5]YANG Hongqi, SUN Lianhuan, AO Zhuqing, SANG Laiyu, YANG Guangguo, GAO Yuan. Anti-Leakage Cementing Technology for the Long Well Section below Technical Casing of Ultra-Deep Wells in the No.1 Area of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(6): 33-39. DOI: 10.11911/syztjs.2020110
    [6]LI Xinyong, LI Chunyue, ZHAO Bing, FANG Haoqing, HUANG Yanfei, HU Wenting. Acidizing Technology for Deep Penetration in Main Fault Zone of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 82-87. DOI: 10.11911/syztjs.2020014
    [7]ZHAI Kejun, YU Yang, LIU Jingtao, BAI Binzhen. Ultra-Deep Well Drilling Technology in the Igneous Invasion Coverage Area of the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 1-5. DOI: 10.11911/syztjs.2020004
    [8]JIANG Tingxue, ZHOU Jun, JIA Wenfeng, ZHOU Linbo. Deep Penetration Acid-Fracturing Technology for Ultra-Deep Carbonate Oil & Gas Reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140-147. DOI: 10.11911/syztjs.2019058
    [9]LIN Yongxue, WANG Weiji, JIN Junbin. Key Drilling Fluid Technology in the Ultra Deep Section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113-120. DOI: 10.11911/syztjs.2019068
    [10]LI Zhiyong, LI Hongfei, ZHANG Lixin, WEI Huoyun, LI Yan. Development and Field Applications of a New Anti-Sloughing Drilling Fluid System in Daniudi Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(3): 39-43. DOI: 10.11911/syztjs.201603007
  • Cited by

    Periodical cited type(26)

    1. 刘雄伟,范胜,管金田,贺垠博. 顺北地区破碎性碳酸盐岩地层钻井液井壁稳定技术. 钻井液与完井液. 2025(01): 51-57 .
    2. 卢运虎,张樱曦,金衍,周波. 考虑钻井液封堵效应的破碎性地层井壁坍塌模型. 岩石力学与工程学报. 2025(S1): 10-20 .
    3. 史配铭,刘召友,荣芳,武宏超,米博超,念富龙. 超深探井荔参1井钻井关键技术. 石油工业技术监督. 2024(02): 50-55 .
    4. 李凡,李大奇,汤志川,高伟. 破碎地层护壁防塌剂研制及性能评价. 精细石油化工. 2024(02): 10-14 .
    5. 胡文革. 顺北油气田“深地工程”关键工程技术进展及发展方向. 石油钻探技术. 2024(02): 58-65 . 本站查看
    6. 杨玉贵,蔡文军,幸雪松,邢希金,林海. 渤中区块破碎性地层井壁失稳机理及对策. 科学技术与工程. 2023(22): 9476-9483 .
    7. 王中华. 国内钻井液技术现状与发展建议. 石油钻探技术. 2023(04): 114-123 . 本站查看
    8. 刘锋报,罗霄,晏智航,张顺从,孙爱生,董樱花. 强封堵水基钻井液在塔里木油田的应用. 钻采工艺. 2023(04): 125-130 .
    9. 马永生,蔡勋育,云露,李宗杰,李慧莉,邓尚,赵培荣. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发. 2022(01): 1-17 .
    10. MA Yongsheng,CAI Xunyu,YUN Lu,LI Zongjie,LI Huili,DENG Shang,ZHAO Peirong. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China. Petroleum Exploration and Development. 2022(01): 1-20 .
    11. 张亚云,李大奇,高书阳,林永学,曾义金. 顺北油气田奥陶系破碎性地层井壁失稳影响因素分析. 断块油气田. 2022(02): 256-260 .
    12. 张锐尧,李军,柳贡慧,郝希宁,何玉发,周云健,王宁. 基于空心球破碎概率的双梯度钻井井筒压力预测. 断块油气田. 2022(02): 278-284 .
    13. 赵宁,尹飞,韩梦天,贾利春,廖智海,史彪彬. 基于相场法的井壁微裂缝扩展规律及坍塌机理研究. 钻采工艺. 2022(02): 8-14 .
    14. 王伟吉,李大奇,金军斌,徐江,张杜杰. 顺北油气田破碎性地层井壁稳定技术难题与对策. 科学技术与工程. 2022(13): 5205-5212 .
    15. 喻化民,薛莉,吴红玲,李海彪,冯丹,杨冀平,鲁娜. 满深区块深井强封堵钻井液技术. 钻井液与完井液. 2022(02): 171-179 .
    16. 张冬明. 松辽盆地中上部水敏性地层高密度油基钻井液研究. 西部探矿工程. 2022(07): 83-87 .
    17. 李科,赵怀珍,李秀灵,周飞. 抗高温高性能水基钻井液及其在顺北801X井的应用. 钻井液与完井液. 2022(03): 279-284 .
    18. 滕春鸣,甄剑武,罗会义,蒋思臣. 一种强吸附疏水改性纳米SiO_2封堵剂. 钻井液与完井液. 2022(03): 307-312 .
    19. 朱金智,杨学文,刘洪涛,杨成新,张绍俊,罗春芝. 塔河南岸跃满区块三叠系防塌钻井液研究与应用. 钻井液与完井液. 2022(03): 319-326 .
    20. 刘湘华,刘彪,杜欢,王沫. 顺北油气田断裂带超深水平井优快钻井技术. 石油钻探技术. 2022(04): 11-17 . 本站查看
    21. 胡清富,刘春来,牟少敏,李增乐,司小东. 伊拉克东巴油田Tanuma组泥页岩高效防塌钻井液技术. 石油钻探技术. 2022(04): 76-82 . 本站查看
    22. 孔勇. 地层环境响应封堵材料研究与应用. 钻井液与完井液. 2022(06): 677-684 .
    23. 吴雄军,林永学,王显光,刘金华,李大奇. 顺北5-7井超深层奥陶系地层油基钻井液技术. 长江大学学报(自然科学版). 2021(01): 100-106 .
    24. 孔勇. 温敏变形封堵剂合成研究与应用. 钻井液与完井液. 2021(06): 677-683 .
    25. 金军斌,欧彪,张杜杰,王希勇,李大奇,王逸. 深部裂缝性碳酸盐岩储层井壁稳定技术研究现状及展望. 长江大学学报(自然科学版). 2021(06): 47-54 .
    26. 吴雄军,林永学,宋碧涛,金军斌,董晓强. 顺北油气田奥陶系破碎性地层油基钻井液技术. 钻井液与完井液. 2020(06): 701-708 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (341) PDF downloads (62) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return