WU Zhuangkun, ZHANG Honglu, CHI Yuxuan. CO2 high pressure quality exchange technology of shale oil in northern Jiangsu Province [J]. Petroleum Drilling Techniques, 2024, 52(4):87-93. DOI: 10.11911/syztjs.2024074
Citation: WU Zhuangkun, ZHANG Honglu, CHI Yuxuan. CO2 high pressure quality exchange technology of shale oil in northern Jiangsu Province [J]. Petroleum Drilling Techniques, 2024, 52(4):87-93. DOI: 10.11911/syztjs.2024074

CO2 High Pressure Quality Exchange Technology of Shale Oil in Northern Jiangsu Province

More Information
  • Received Date: March 15, 2023
  • Revised Date: June 27, 2024
  • Available Online: July 09, 2024
  • In order to maintain the energy of shale oil reservoirs in northern Jiangsu Province, reduce the decline rate of production, and improve the recovery rate of shale oil reservoirs, the study on CO2 high pressure quality exchange technology of shale oil in northern Jiangsu Province were carried out. The effects of CO2 injection pressure and soaking time on crude oil recovery percent and CO2 injection rate on crude oil recovery factor were analyzed by using shale oil reservoir cores in northern Jiangsu Province for laboratory experiments. Numerical simulation software was used to optimize the injection time, injection volume, injection rate, and shut-in time of Well SD1J. A field test of high pressure quality exchange technology with a super large volume of CO2 was carried out in Well SD1J. After the measure implementation, the well produced oil normally. The daily fluid production decreased from 38.6 t/d to 30.3 t/d, and the daily oil production increased from 14.0 t/d to 29.2 t/d. The water content decreased from 63.8% to 3.5%. The results show that CO2 high pressure quality exchange technology can increase the formation energy of shale oil reservoirs and reduce the decline rate of production, which provides new technical support for improving the development effect of shale oil reservoirs.

  • [1]
    袁建强. 济阳坳陷页岩油多层立体开发关键工程技术[J]. 石油钻探技术,2023,51(1):1–8. doi: 10.11911/syztjs.2023001

    YUAN Jianqiang. Key engineering technologies for three-dimensional development of multiple formations of shale oil in Jiyang Depression[J]. Petroleum Drilling Techniques, 2023, 51(1): 1–8. doi: 10.11911/syztjs.2023001
    [2]
    赖富强,李仕超,王敏,等. 济阳坳陷页岩油储层矿物组分最优化反演方法[J]. 特种油气藏,2022,29(2):16–23. doi: 10.3969/j.issn.1006-6535.2022.02.003

    LAI Fuqiang, LI Shichao, WANG Min, et al. Optimal retrieval method for mineral constituents of shale oil reservoirs in Jiyang Sag[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 16–23. doi: 10.3969/j.issn.1006-6535.2022.02.003
    [3]
    迟建功. 大庆古龙页岩油水平井钻井技术[J]. 石油钻探技术,2023,51(6):12–17. doi: 10.11911/syztjs.2023002

    CHI Jiangong. Drilling technologies for horizontal wells of Gulong shale oil in Daqing[J]. Petroleum Drilling Techniques, 2023, 51(6): 12–17. doi: 10.11911/syztjs.2023002
    [4]
    姚红生,昝灵,高玉巧,等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油富集高产主控因素与勘探重大突破[J]. 石油实验地质,2021,43(5):776–783. doi: 10.11781/sysydz202105776

    YAO Hongsheng, ZAN Ling, GAO Yuqiao, et al. Main controlling factors for the enrichment of shale oil and significant discovery in second member of Paleogene Funing Formation, Qintong Sag, Subei Basin[J]. Petroleum Geology and Experiment, 2021, 43(5): 776–783. doi: 10.11781/sysydz202105776
    [5]
    雷群,胥云,才博,等. 页岩油气水平井压裂技术进展与展望[J]. 石油勘探与开发,2022,49(1):166–172. doi: 10.11698/PED.2022.01.15

    LEI Qun, XU Yun, CAI Bo, et al. Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs[J]. Petroleum Exploration and Development, 2022, 49(1): 166–172. doi: 10.11698/PED.2022.01.15
    [6]
    张衍君,王鲁瑀,刘娅菲,等. 页岩油储层压裂−提采一体化研究进展与面临的挑战[J]. 石油钻探技术,2024,52(1):84–95. doi: 10.11911/syztjs.2024012

    ZHANG Yanjun, WANG Luyu, LIU Yafei, et al. Advances and challenges of integration of fracturing and enhanced oil recovery in shale oil reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(1): 84–95. doi: 10.11911/syztjs.2024012
    [7]
    马立军,梁晓伟,贾剑波,等. 陆相夹层型页岩油超长水平井开发技术[J/OL]. 石油钻采工艺:1-11[2024-06-16]. https://doi.org/10.13639/j.odpt.202404044.

    MA Lijun, LIANG Xiaowei, JIA Jianbo, et al. Development technology for ultra long horizontal wells in continental interbedded shale oil[J/OL]. Oil Drilling & Production Technology: 1-11[2024-06-16]. https://doi.org/10.13639/j.odpt.202404044.
    [8]
    郭贵安,唐青松,蒋裕强,等. 夹层型页岩油突破及其油气地质意义:以四川盆地中部G119H井为例[J]. 天然气工业,2024,44(3):53–63.

    GUO Guian, TANG Qingsong, JIANG Yuqiang, et al. Exploration breakthrough of sandwiched shale oil in Sichuan Basin and its gas-oil geological implications: taking Well G119H in the central Sichuan Basin as an example[J]. Natural Gas Industry, 2024, 44(3): 53–63.
    [9]
    王春伟,杜焕福,董佑桓,等. 泌阳凹陷页岩油水平井随钻定测录导一体化模式探索[J]. 断块油气田,2024,31(3):424–431.

    WANG Chunwei, DU Huanfu, DONG Youhuan, et al. Exploration of ‘directing, logging, mud-logging, steering’ integration model while drilling for shale oil horizontal wells in Biyang Depression[J]. Fault-Block Oil & Gas Field, 2024, 31(3): 424–431.
    [10]
    范明福,明鑫,明柱平,等. 基质型页岩油储层高导流体积缝网压裂技术[J]. 断块油气田,2023,30(5):721–727.

    FAN Mingfu, MING Xin, MING Zhuping, et al. Volume fracture network fracturing technology of high conductivity for matrix shale oil reservoir[J]. Fault-Block Oil & Gas Field, 2023, 30(5): 721–727.
    [11]
    刘巍,曹小朋,徐耀东,等. 页岩油井生产数据分析与产能评价方法[J]. 断块油气田,2023,30(4):572–578.

    LIU Wei, CAO Xiaopeng, XU Yaodong, et al. Production data analysis and productivity evaluation method for shale oil wells[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 572–578.
    [12]
    姚振华,覃建华,高阳,等. 吉木萨尔凹陷页岩油物性变化规律[J]. 新疆石油地质,2022,43(1):72–78.

    YAO Zhenhua, QIN Jianhua, GAO Yang, et al. Variations of physical properties of shale oil in Jimsar Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2022, 43(1): 72–78.
    [13]
    张矿生,齐银,薛小佳,等. 鄂尔多斯盆地页岩油水平井CO2区域增能体积压裂技术[J]. 石油钻探技术,2023,51(5):15–22. doi: 10.11911/syztjs.2023091

    ZHANG Kuangsheng, QI Yin, XUE Xiaojia, et al. CO2 regional enhanced volumetric fracturing technology for shale oil horizontal wells in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 15–22. doi: 10.11911/syztjs.2023091
    [14]
    李凤霞,王海波,周彤,等. 页岩油储层裂缝对CO2吞吐效果的影响及孔隙动用特征[J]. 石油钻探技术,2022,50(2):38–44. doi: 10.11911/syztjs.2022006

    LI Fengxia, WANG Haibo, ZHOU Tong, et al. The influence of fractures in shale oil reservoirs on CO2 huff and puff and its pore production characteristics[J]. Petroleum Drilling Techniques, 2022, 50(2): 38–44. doi: 10.11911/syztjs.2022006
    [15]
    钱钦,鲁明晶,钟安海. 东营凹陷陆相页岩油CO2增能压裂裂缝形态研究[J]. 石油钻探技术,2023,51(5):42–48. doi: 10.11911/syztjs.2023082

    QIAN Qin, LU Mingjing, ZHONG Anhai. Study on fracture morphology of CO2 energized fracturing of continental shale oil in Dongying Sag[J]. Petroleum Drilling Techniques, 2023, 51(5): 42–48. doi: 10.11911/syztjs.2023082
    [16]
    赵清民,伦增珉,章晓庆,等. 页岩油注CO2动用机理[J]. 石油与天然气地质,2019,40(6):1333–1338. doi: 10.11743/ogg20190617

    ZHAO Qingmin, LUN Zengmin, ZHANG Xiaoqing, et al. Mechanism of shale oil mobilization under CO2 injection[J]. Oil & Gas Geology, 2019, 40(6): 1333–1338. doi: 10.11743/ogg20190617
    [17]
    郎东江,伦增珉,吕成远,等. 页岩油注二氧化碳提高采收率影响因素核磁共振实验[J]. 石油勘探与开发,2021,48(3):603–612. doi: 10.11698/PED.2021.03.15

    LANG Dongjiang, LUN Zengmin, LYU Chengyuan, et al. Nuclear magnetic resonance experimental study of CO2 injection to enhance shale oil recovery[J]. Petroleum Exploration and Development, 2021, 48(3): 603–612. doi: 10.11698/PED.2021.03.15
    [18]
    汤翔,李宜强,韩雪,等. 致密油二氧化碳吞吐动态特征及影响因素[J]. 石油勘探与开发,2021,48(4):817–824. doi: 10.11698/PED.2021.04.14

    TANG Xiang, LI Yiqiang, HAN Xue, et al. Dynamic characteristics and influencing factors of CO2 huff and puff in tight oil reservoirs[J]. Petroleum Exploration and Development, 2021, 48(4): 817–824. doi: 10.11698/PED.2021.04.14
  • Related Articles

    [1]MENG Qingwei, JIANG Tianjie, LIU Yongjing, YANG Jie, WANG Yuezhi. Calculation and Correction of Azimuth Errors Based on Finite Element Analysis[J]. Petroleum Drilling Techniques, 2022, 50(3): 66-73. DOI: 10.11911/syztjs.2022031
    [2]WU Shiwei, LIU Dejun, ZHAO Yang, WANG Xu, FENG Xue, LI Yang. Finite-Element Forward Modeling of Electromagnetic Response of Hydraulic Fractures in Layered Medium[J]. Petroleum Drilling Techniques, 2022, 50(2): 132-138. DOI: 10.11911/syztjs.2022060
    [3]ZHANG Hao, BI Xueliang, LIU Weikai, XU Yueqing, SONG Mingxing, SHAO Shuai. Investigation of the Factors that Influence EM-MWD Signal Transmission in Drill Strings[J]. Petroleum Drilling Techniques, 2021, 49(6): 125-130. DOI: 10.11911/syztjs.2021128
    [4]XIE Han, KUANG Yuchun, QIN Chao. The Finite Element Simulation and Test of Rock Breaking by Non-Planar PDC Cutting Cutter[J]. Petroleum Drilling Techniques, 2019, 47(5): 69-73. DOI: 10.11911/syztjs.2019043
    [5]WANG Weijia. The Technology of Long Cable Snubbing Fishing through Coiled Tubing in Horizontal Shale Gas Wells[J]. Petroleum Drilling Techniques, 2018, 46(3): 109-113. DOI: 10.11911/syztjs.2018057
    [6]Liu Xiuquan, Chen Guoming, Song Qiang, Chang Yuanjiang, Xu Liangbin. Collapse Assessment for Deepwater Drilling Risers on the Basis of Finite Element Method[J]. Petroleum Drilling Techniques, 2015, 43(4): 43-47. DOI: 10.11911/syztjs.201504008
    [7]Yu Yang, Zhou Wei, Liu Xiaomin, Fu Jianhong, Zheng Jiangli. Finite Element Numerical Simulation of Expansive Force on Solid Expandable Tube and Its Application[J]. Petroleum Drilling Techniques, 2013, 41(5): 107-110. DOI: 10.3969/j.issn.1001-0890.2013.05.021
    [8]Turbodrill Seal Ring Temperature Finite Element Analysis[J]. Petroleum Drilling Techniques, 2011, 39(2): 112-116. DOI: 10.3969/j.issn.1001-0890.2011.02.023
  • Cited by

    Periodical cited type(2)

    1. 刘小年,刘燕云,刘豪,陈少奇,徐单廷,于立晨,蒋文明. 海上油田钻屑远距离传输摩阻计算研究. 化工科技. 2024(03): 46-53 .
    2. 陈强,张忠亮,赖辰熙,李斌,何兵,郭磊,冯永存. 水基钻屑固液分离室内实验研究. 石化技术. 2024(10): 61-63 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (125) PDF downloads (52) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return