WANG Wanjiang, LI Weiqin, LIU Changmin, et al. Collaborative relay transmission method for downhole surface electromagnetic waves [J]. Petroleum Drilling Techniques, 2024, 52(4):143-150. DOI: 10.11911/syztjs.2024076
Citation: WANG Wanjiang, LI Weiqin, LIU Changmin, et al. Collaborative relay transmission method for downhole surface electromagnetic waves [J]. Petroleum Drilling Techniques, 2024, 52(4):143-150. DOI: 10.11911/syztjs.2024076

Collaborative Relay Transmission Method for Downhole Surface Electromagnetic Waves

More Information
  • Received Date: December 07, 2022
  • Revised Date: July 08, 2024
  • Available Online: July 21, 2024
  • When conducting downhole surface electromagnetic wave communication, an unreasonable layout of the relay will lead to the reduction of signal strength. To address this issue, a collaborative relay transmission method for surface electromagnetic wave was proposed. Firstly, the propagation characteristics of surface electromagnetic waves were analyzed by combining numerical simulations and experiments. Then, based on the electric field integral method, a mathematical model for the relay transmission system of downhole surface electromagnetic wave was established. The impact of different relay layouts and quantities on the signal strength of receivers was analyzed. The results show that surface electromagnetic wave have smaller attenuation and higher transmission rates compared to traditional wireless electromagnetic wave, which can be an efficient mode of subsurface communication. Meanwhile, the use of collaborative relay transmission technology of surface electromagnetic wave can increase signal strength by an average of 5.91 dB, providing a new approach to increase the transmission distance of downhole surface electromagnetic wave communication.

  • [1]
    王延文,叶海超. 随钻测控技术现状及发展趋势[J]. 石油钻探技术,2024,52(1):122–129. doi: 10.11911/syztjs.2024017

    WANG Yanwen, YE Haichao. Current status and development trend of measurement & control while drilling technology[J]. Petroleum Drilling Techniques, 2024, 52(1): 122–129. doi: 10.11911/syztjs.2024017
    [2]
    李皋,陈泽,孟英峰,等. 气体钻井MMWD随钻测量方法研究[J]. 石油钻探技术,2018,46(5):52–56.

    LI Gao, CHEN Ze, MENG Yingfeng, et al. Research on measurement methods of MMWD during gas drilling[J]. Petroleum Drilling Techniques, 2018, 46(5): 52–56.
    [3]
    李志刚,管志川,王以法. 近钻头短距离声波通信[J]. 中国石油大学学报(自然科学版),2010,34(2):62–66.

    LI Zhigang, GUAN Zhichuan, WANG Yifa. Acoustic communication near-bit short distance[J]. Journal of China University of Petroleum (Edition of Natural Science), 2010, 34(2): 62–66.
    [4]
    刘修善,侯绪田,涂玉林,等. 电磁随钻测量技术现状及发展趋势[J]. 石油钻探技术,2006,34(5):4–9.

    LIU Xiushan, HOU Xutian, TU Yulin, et al. Developments of electromagnetic measurement while drilling[J]. Petroleum Drilling Techniques, 2006, 34(5): 4–9.
    [5]
    SMOLYANINOV I, BALZANO Q, YOUNG D. Development of broadband underwater radio communication for application in unmanned underwater vehicles[J]. Journal of Marine Science and Engineering, 2020, 8(5): 370. doi: 10.3390/jmse8050370
    [6]
    MILLER R R II, WORSTELL H R. Using surface wave propagation to communicate an information-bearing signal through a barrier: US 8269583 B2[P]. 2012-09-18.
    [7]
    TARIQ F, KHANDAKER M R A, WONG K K, et al. A speculative study on 6G[J]. IEEE Wireless Communications, 2020, 27(4): 118–125. doi: 10.1109/MWC.001.1900488
    [8]
    SMOLYANINOV I I, BALZANO Q, DAVIS C C, et al. Surface wave based underwater radio communication[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(12): 2503–2507. doi: 10.1109/LAWP.2018.2880008
    [9]
    AMJADI S M, SARABANDI K. A compact single conductor transmission line launcher for telemetry in borehole drilling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2674–2681. doi: 10.1109/TGRS.2017.2650907
    [10]
    ROBERSON M W, RODNEY P F, GOODWIN S. Downhole wireless communications using surface waves: US 20180003040 A1[P]. 2018-01-04.
    [11]
    GUZMAN J. Electromagnetic surface wave communication in a pipe: US 20200277853 A1[P]. 2020-09-03.
    [12]
    庞东晓,韩雄,潘登,等. 中继传输技术在井下无线地面直读中的应用[J]. 油气井测试,2016,25(6):43–45.

    PANG Dongxiao, HAN Xiong, PAN Deng, et al. Application of relay transmission technology in surface wireless read-out[J]. Well Testing, 2016, 25(6): 43–45.
    [13]
    田腾. 随钻电磁波接力传输模拟电路系统研究[D]. 成都:电子科技大学,2019.

    TIAN Teng. Research of analog circuit system on electromagnetic wave relay transmission while drilling[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
    [14]
    陈晓晖,高炳堂,宋朝晖. 超高阻盐膏层随钻电磁中继传输特性研究[J]. 石油钻探技术,2018,46(3):114–119.

    CHEN Xiaohui, GAO Bingtang, SONG Zhaohui. Research on downhole electromagnetic repeater transmission characteristics in ultra high resistivity gypsum-salt layers[J]. Petroleum Drilling Techniques, 2018, 46(3): 114–119.
    [15]
    WANG Wanjiang, LI Weiqin, LIU Changmin, et al. Theoretical study of in-phase forwarding in enhancing underground wireless electromagnetic relay transmission[C]//Proceedings of the 2021 International Petroleum and Petrochemical Technology Conference. Singapore: Springer, 2022: 623-628.
    [16]
    AMJADI S M. Electromagnetic concepts to enhance communication in harsh RF environments[D]. Ann Arbor: University of Michigan, 2019.
    [17]
    ROBERSON M W, GOODWIN S. Magnetic surface wave effect to probe fluid properties in a wellbore: US 10534106 B2[P]. 2020-01-14.
    [18]
    黄志洵,姜荣. 表面电磁波与表面等离子波[J]. 中国传媒大学学报(自然科学版),2011,18(2):1–13. doi: 10.3969/j.issn.1673-4793.2011.02.001

    HUANG Zhixun, JIANG Rong. Surface electro-magnetic waves and surface plasma waves[J]. Journal of Communication University of China(Science and Technology), 2011, 18(2): 1–13. doi: 10.3969/j.issn.1673-4793.2011.02.001
    [19]
    曹萍. 电偶极子在三层介质中激励电磁场的瞬态解[D]. 杭州:浙江大学,2015.

    CAO Ping. Transient field of electric dipole in the presence of three-layered region[D]. Hangzhou: Zhejiang University, 2015.
  • Related Articles

    [1]ZHOU Xiaoyi, XIAO Wulin, WANG Meicheng, KANG Chengman, ZHANG Lei, WANG Zhengliang. Study and Field Test on a High Temperature Plugging Agent for the Thermal Recovery of Heavy Oil in Fengcheng Oilfield, Xinjiang[J]. Petroleum Drilling Techniques, 2021, 49(6): 113-117. DOI: 10.11911/syztjs.2021132
    [2]JIA Zhiwei, CHENG Changkun, ZHU Xiuyu, PU Lantian, HAN Yu, HU Futang. Oil Recovery Enhancement by Composite Flooding Technology for Gasi N1–N21 Ultra-High-Salinity Reservoir in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 81-87. DOI: 10.11911/syztjs.2021121
    [3]YU Fahao, JIANG Zhaoping, BAI Jianhua, LIU Yigang, MENG Xianghai. Determination of the Temperature Resistance Capacity of Sand Control Screen Liner in Horizontal Heavy Oil Wells in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(6): 65-70. DOI: 10.11911/syztjs.2018010
    [4]PENG Zhenhua, ZHANG Yuan, DING Wen, REN Xianghai, LI Xiaojun, XIONG Wei. Artificial Lifting Technology Applied in Ultra-Deep Super-Heavy Oil Reservoirs of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(4): 84-90. DOI: 10.11911/syztjs.2018094
    [5]ZHANG Junlong, WANG Aiyun, HE Xiangxiang. Carbonate Lithology and Microfacies Logging Identification in the Gucheng Area[J]. Petroleum Drilling Techniques, 2016, 44(3): 121-126. DOI: 10.11911/syztjs.201603022
    [6]CUI Chuanzhi, SHENG Qian, JIANG Yidong, YANG Feng, JIA Peifeng. Development and Application of Borehole Insulation Techniques for the Development of Heavy Oil Production in the Dongxin Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(1): 79-84. DOI: 10.11911/syztjs.201601015
    [7]Xu Hui. Solution Characteristics and Oil Displacement Efficiency of an Ultrahigh Molecular Weight Association Polymer[J]. Petroleum Drilling Techniques, 2015, 43(2): 78-83. DOI: 10.11911/syztjs.201502014
    [8]Chen Shaoyun, Li Aihui, Li Ruiying, Wang Chu, Liu Jinwei. Horizontal Well Drilling Technology in Shallow Heavy Oil Recovery in Block Puqian 12 of the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 126-130. DOI: 10.11911/syztjs.201501022
    [9]Xu Hui, Sun Xiuzhi, Han Yugui, He Dongyue, Dong Wen. Performance Evaluation and Microstructure Study of Ultra High Molecular Weight Polymer[J]. Petroleum Drilling Techniques, 2013, 41(3): 114-118. DOI: 10.3969/j.issn.1001-0890.2013.03.022
    [10]Segmented Completion String Running Technology of Shallow Heavy Oil Horizontal Well in Xinjiang Oilfield[J]. Petroleum Drilling Techniques, 2011, 39(4): 44-47. DOI: 10.3969/j.issn.1001-0890.2011.04.009
  • Cited by

    Periodical cited type(3)

    1. 杨开吉,张颖,魏强,程艳,刘全刚. 海上油田开发用抗温抗盐乳液聚合物研制与性能评价. 石油钻探技术. 2024(04): 118-127 . 本站查看
    2. 李硕轩,赵东睿,高红茜,刘誉. 超高分子聚合物驱提高高盐稠油油藏采收率机理及现场应用. 钻采工艺. 2023(01): 132-139 .
    3. 白佳佳,顾添帅,司双虎,陶磊,张娜,史文洋,朱庆杰. 高盐稠油油藏聚合物驱提高采收率研究. 常州大学学报(自然科学版). 2023(05): 60-66 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return