ZHOU Jun, SHI Ye, LIANG Guangchuan, et al. Optimization of partial-pressure periodic water injection in oilfield under time-of-use electricity price [J]. Petroleum Drilling Techniques, 2024, 52(3):106-111. DOI: 10.11911/syztjs.2024016
Citation: ZHOU Jun, SHI Ye, LIANG Guangchuan, et al. Optimization of partial-pressure periodic water injection in oilfield under time-of-use electricity price [J]. Petroleum Drilling Techniques, 2024, 52(3):106-111. DOI: 10.11911/syztjs.2024016

Optimization of Partial-Pressure Periodic Water Injection in Oilfield under Time-of-Use Electricity Price

More Information
  • Received Date: July 03, 2023
  • Revised Date: March 22, 2024
  • Accepted Date: May 30, 2024
  • Available Online: June 02, 2024
  • In order to reduce the throttling loss of the valve group caused by the inconsistent demand pressure of each water injection well, a mathematical model of partial-pressure periodic water injection under time-of-use (TOU) electricity price was established. The model took the lowest total energy consumption cost of the pump station as the objective function and the service requirements of the pump assembly in the station and water injection well outside the station as the constraint conditions. Modeling programming was performed with mathematical planning and a optimization general algebraic modeling system (GAMS). The embedded branch-and-reduce optimization navigator (BARON) solver was called to solve the problem. According to the actual water injection situation, two operation schemes of cross water injection and sequential water injection were considered in each pressure range, and the best water injection scheme was determined by comparative analysis. The results show that after optimization, the average throttling loss of low-pressure and medium-pressure water injection well group is reduced by about 7 MPa and 3 MPa, respectively. The partial-pressure periodic water injection under TOU electricity price has good economic benefits, which can reduce the energy consumption cost within one period by about 13000 yuan and greatly reduce the energy consumption cost caused by throttling loss in site. Compared with cross water injection, sequential water injection has better practical value and operability and can provide some reference for the actual operation and production of the site.

  • [1]
    王涛,李尧,何辉. 考虑压力约束的精细分层注水耦合调配模型[J]. 石油钻探技术,2023,51(2):95–101. doi: 10.11911/syztjs.2023012

    WANG Tao, LI Yao, HE Hui. A coupling allocation model of finely layered water injection considering pressure constraint[J]. Petroleum Drilling Techniques, 2023, 51(2): 95–101. doi: 10.11911/syztjs.2023012
    [2]
    孙鹏,何祖清,彭汉修. 基于双向数据无缆传输的分层注水技术[J]. 石油钻采工艺,2023,45(6):783–788.

    SUN Peng, HE Zuqing, PENG Hanxiu. Separate-layer waterflooding technology based on bidirectional cable-less data transmission[J]. Oil Drilling & Production Technology, 2023, 45(6): 783–788.
    [3]
    杨玲智,周志平,杨海恩,等. 桥式同心井下恒流分层注水技术[J]. 石油钻探技术,2022,50(4):104–108. doi: 10.11911/syztjs.2022051

    YANG Lingzhi, ZHOU Zhiping, YANG Haien, et al. Downhole constant-flow stratified water injection technology with concentric bridge[J]. Petroleum Drilling Techniques, 2022, 50(4): 104–108. doi: 10.11911/syztjs.2022051
    [4]
    宋来明,王春秋,卢川,等. 数据驱动的复杂油藏注采生产优化技术研究进展[J]. 石油钻采工艺,2022,44(2):253–260.

    SONG Laiming, WANG Chunqiu, LU Chuan, et al. Research progress of data-driven injection production optimization of complex oil reservoirs[J]. Oil Drilling & Production Technology, 2022, 44(2): 253–260.
    [5]
    赵广渊,王天慧,杨树坤,等. 渤海油田液压控制智能分注优化关键技术[J]. 石油钻探技术,2022,50(1):76–81. doi: 10.11911/syztjs.2021125

    ZHAO Guangyuan, WANG Tianhui, YANG Shukun, et al. Key optimization technologies of intelligent layered water injection with hydraulic control in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(1): 76–81. doi: 10.11911/syztjs.2021125
    [6]
    贾贻勇,李永康. 胜坨油田套损井分层注水及测调技术[J]. 石油钻探技术,2021,49(2):107–112. doi: 10.11911/syztjs.2020137

    JIA Yiyong, LI Yongkang. Techniques of layering injection and the measurement-adjustment towards wells with casing damage in Shengtuo Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(2): 107–112. doi: 10.11911/syztjs.2020137
    [7]
    赵洪绪,柴世超,毛敏,等. 基于长短期记忆神经网络模型的分层注水优化方法[J]. 中国海上油气,2023,35(4):127–137.

    ZHAO Hongxu, CHAI Shichao, MAO Min, et al. Optimization of stratified water injection based on long-short term memory neural network model[J]. China Offshore Oil and Gas, 2023, 35(4): 127–137.
    [8]
    刘欢. 基于油田地面注水系统的优化技术研究[J]. 中文科技期刊数据库(引文版)工程技术,2023(5):189–192.

    LIU Huan. Research on optimization technology based on oilfield surface water injection system[J]. Chinese Science and Technology Journal Database (Citation Edition) Engineering Technology, 2023(5): 189–192.
    [9]
    周继德. 油田分压注水是重要的节能措施[J]. 中国能源,1993,15(9):46.

    ZHOU Jide. Partial pressure water injection is an important energy-saving measure in oilfield[J]. Energy of China, 1993, 15(9): 46.
    [10]
    刘永宁. 分压注水节能技术在油田的应用[J]. 中国石油和化工标准与质量,2019,39(8):212–213. doi: 10.3969/j.issn.1673-4076.2019.08.103

    LIU Yongning. Application of partial pressure water injection energy saving technology in oilfield[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(8): 212–213. doi: 10.3969/j.issn.1673-4076.2019.08.103
    [11]
    侯永宾,苏杰,陈宇翔,等. 分压注水节能技术在轮南油田的应用[J]. 化工设计通讯,2019,45(8):27–28. doi: 10.3969/j.issn.1003-6490.2019.08.019

    HOU Yongbin, SU Jie, CHEN Yuxiang, et al. Application of partial pressure water injection energy saving technology in Lunnan Oilfield[J]. Chemical Engineering Design Communication, 2019, 45(8): 27–28. doi: 10.3969/j.issn.1003-6490.2019.08.019
    [12]
    谭文捷. 国外某油田注水管网优化调整研究[J]. 北京石油化工学院学报,2023,31(2):44–48.

    TAN Wenjie. Research on optimization and adjustment of water injection pipe network in a foreign oilfield[J]. Journal of Beijing Institute of Petrochemical Technology, 2023, 31(2): 44–48.
    [13]
    白羽. 双管分压注水技术的研究与应用[J]. 化学工程与装备,2016(5):106–107.

    BAI Yu. Research and application of water injection technology with two separate pressure tubes[J]. Chemical Engineering & Equipment, 2016(5): 106–107.
    [14]
    段闯,赵辉,孙震,等. 桩西采油厂分压注水节能技术应用[J]. 石油石化节能,2020,10(11):13–15.

    DUAN Chuang, ZHAO Hui, SUN Zhen, et al. Application of partial pressure water injection and energy saving technology in Zhuangxi oil production plant[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2020, 10(11): 13–15.
    [15]
    王辉. 河口采油厂分压注水技术研究与应用[J]. 油气田地面工程,2018,37(11):12–16.

    WANG Hui. Study and application of the partial pressure water injection technology in Hekou oil production plant[J]. Oil-Gas Field Surface Engineering, 2018, 37(11): 12–16.
    [16]
    冯杰. 分压注水技术在小营油田的应用[J]. 精细石油化工进展,2020,21(1):13–15. doi: 10.3969/j.issn.1009-8348.2020.01.004

    FENG Jie. Application of partial pressure water injection technology in Xiaoying Oilfield[J]. Advances in Fine Petrochemicals, 2020, 21(1): 13–15. doi: 10.3969/j.issn.1009-8348.2020.01.004
    [17]
    刘斌. 油田注水系统数学建模与控制理论研究[D]. 青岛:中国石油大学(华东),2007.

    LIU Bin. Study on the mathematical modeling and control method for oilfield water flooding system[D]. Qingdao: China University of Petroleum(East China), 2007.
    [18]
    高振东. 延长油田注水开发技术与实践[M]. 北京:石油工业出版社,2018.

    GAO Zhendong. Water injection development technology and practice in Yanchang Oilfield[M]. Beijing: Petroleum Industry Press, 2018.
    [19]
    梁永图,周星远,邱睿,等. 大型环枝状油田注水管网系统运行优化[J]. 中国石油大学学报(自然科学版),2018,42(6):121–132. doi: 10.3969/j.issn.1673-5005.2018.06.014

    LIANG Yongtu, ZHOU Xingyuan, QIU Rui, et al. Optimal operation study on the large-scale looped and branched waterflooding pipeline network system of oilfields[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(6): 121–132. doi: 10.3969/j.issn.1673-5005.2018.06.014
    [20]
    GB 50391—2014 油田注水工程设计规范[S].

    GB 50391—2014 Code for design of oilfield water injection engineering[S].
    [21]
    孙志璇. 面向电力市场的梯级水电站短期优化调度研究[D]. 兰州:兰州理工大学,2016.

    SUN Zhixuan. Study on short-term optimal operation of cascade hydropower stations in electricity market[D]. Lanzhou: Lanzhou University of Technology, 2016.
  • Related Articles

    [1]QIN Jianyu, LI Bo, RAO Zhihua, JIN Yong, ZHANG Yong, LIU Yongfeng. Key Cementing Technologies for an Ultra-Deep Extended Reach Well in Enping 21–4 Oilfield, Eastern South China Sea[J]. Petroleum Drilling Techniques, 2025, 53(2): 30-37. DOI: 10.11911/syztjs.2025026
    [2]YI Ming, DAI Yong, YANG Huanqiang, NAN Yadong, JI Mengjia, MEI Yuntao. Wellbore Pressure Control Technologies while Running Managed Pressure Casing with Negative Pressure Window[J]. Petroleum Drilling Techniques, 2024, 52(1): 17-25. DOI: 10.11911/syztjs.2023106
    [3]ZHANG Xinliang, JIN Lei, ZHANG Rui, ZHANG Guanlin, FENG Liying. Key Technologies for Casing Running with Double Floating Collars in Middle and Deep Horizontal Wells[J]. Petroleum Drilling Techniques, 2023, 51(6): 57-63. DOI: 10.11911/syztjs.2023053
    [4]SHI Peiming, LI Xiaoming, NI Huafeng, SHI Chongdong, JIANG Qingbo, CHENG Hualin. Casing Program Optimization and Drilling Matching Technologies for Horizontal Wells in Sulige Gas Field[J]. Petroleum Drilling Techniques, 2021, 49(6): 29-36. DOI: 10.11911/syztjs.2021057
    [5]CHEN Xinyong, XU Minglei, MA Ying, XU Yaping, ZHAO Bo, HAN Xu. Drilling and Completion Technologies of Extended-Reach Wells in the Yangshuiwu Buried Hill Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(2): 14-19. DOI: 10.11911/syztjs.2021010
    [6]HU Daliang, OU Biao, HE Long, XIAO Guoyi, LI Wensheng, TANG Yuxiang. Casing Program Optimization and Drilling Matching Technologies for Marine Ultra-Deep Highly Deviated Wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(3): 22-28. DOI: 10.11911/syztjs.2020053
    [7]LIN Siyuan, ZHANG Jie, HAN Cheng, HU Jie, TIAN Zongqiang, ZHENG Haopeng. Key Technology for Horizontal Well of Extended Reach Drilling in the Shallow Reservoirs of the Dongfang Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(5): 17-21. DOI: 10.11911/syztjs.2019105
    [8]WANG Bo, WANG Xu, XING Zhiqian, YUAN Zongling, LI Shijie. Drilling and Completion Technologies of Extended-Reach Wells in the Artificial Island of the Jidong Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(4): 42-46. DOI: 10.11911/syztjs.2018118
    [9]Liang Erguo, Li Zifeng, Wang Changjin, Han Dongying. Casing Abrasion Prediction for Deep and Extended Reach Wells[J]. Petroleum Drilling Techniques, 2013, 41(2): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.02.013
    [10]Chen Shu, Zhang Wenhua, Wang Lei, Li Wanjun, Yang Guobin. Casing Running Technology for High Horizontal-Displacement to Vertical-Depth Ratio 3D Shallow Layer Horizontal Well in Venezuela[J]. Petroleum Drilling Techniques, 2013, 41(1): 56-60. DOI: 10.3969/j.issn.1001-0890.2013.01.011
  • Cited by

    Periodical cited type(47)

    1. 申金伟,郭布民,陈玲,赵健,张康,潘江浩,豆连营,李栓,许田鹏. 鄂尔多斯盆地东缘深煤层用一体化变黏压裂液研究及应用. 山东化工. 2024(12): 186-188 .
    2. 冯奇,蒋官澄,张朔,黄胜铭,王全得,王文卓. 滑溜水压裂液用超疏水型多功能减阻剂制备及应用. 钻井液与完井液. 2024(03): 405-413 .
    3. 程长坤,张成娟,赵文凯,王志晟,隋国杰,刘欢. 多效变黏滑溜水稠化剂制备与性能评价. 精细石油化工. 2023(03): 12-17 .
    4. 赵伟,杨永,尹崇烈. 页岩气EDR-1滑溜水压裂液开发与现场应用. 石油工业技术监督. 2023(05): 58-62+68 .
    5. 许可,高航,石阳,刘臣,赖建林,葛婧楠,王皓霁. 储层改造用滑溜水压裂液性能研究进展. 应用化工. 2023(05): 1519-1524 .
    6. 葛欣. 新型一体化缔合压裂液性能分析与应用评价. 中外能源. 2023(08): 58-62 .
    7. 李宪文,徐晓晨,王文雄,胡子见,古永红,叶亮,马利静. 超低渗储层压裂液返排特性及组成变化研究. 工程热物理学报. 2023(08): 2153-2160 .
    8. 范克明,尚宏志,杜辉,朱文波,裴涛. 压裂返排液对不携砂滑溜水压裂液性能影响研究. 采油工程. 2022(01): 25-29+83 .
    9. 袁冬,卢刚,杜林. 一体化可变黏滑溜水在川西致密气井的先导试验. 石油化工应用. 2022(05): 51-55 .
    10. 魏娟明. 滑溜水–胶液一体化压裂液研究与应用. 石油钻探技术. 2022(03): 112-118 . 本站查看
    11. 薛新茹,李艳琦,孙铭辰. 聚丙烯酰胺类乳液型降阻剂的研制与应用. 精细石油化工. 2022(04): 23-26 .
    12. 刘晓瑞,刘利锋,傅鹏,李小玲,石华强,张雯娟. 抗盐速溶型减阻剂的制备及性能评价. 精细石油化工. 2022(04): 31-35 .
    13. 麦尔耶姆古丽·安外尔,蒲迪,翟怀建,刘宽,邬国栋,余波,金诚. 悬浮液基高效减阻携砂压裂液的研发与应用. 油田化学. 2022(03): 387-392+400 .
    14. 徐太平,李栓,周京伟,袁发明. 滑溜水压裂液用乳液降阻剂的合成及应用. 精细石油化工. 2022(06): 23-27 .
    15. 武绍杰. 液态二氧化碳在缝网压裂中的研究与应用. 采油工程. 2022(02): 12-18+89 .
    16. 何静,王满学,吴金桥,范昊坤,郭锦涛. 微乳液聚合物FRSP-1水溶液的流变特性研究. 精细石油化工. 2021(01): 63-67 .
    17. 陈昊,毕凯琳,张军,刘虎子,张胜,冯玉军. 非常规油气开采压裂用减阻剂研究进展. 油田化学. 2021(02): 347-359 .
    18. 刘福建,王立祥,杜良军,刘挺,张磊,刘斌. 耐盐型悬浮分散聚合物体系的制备及在盐水基变黏滑溜水体系中的应用. 钻井液与完井液. 2021(04): 504-509 .
    19. 赵玉东. 低伤害高效清洁滑溜水压裂液体系研制与应用. 大庆石油地质与开发. 2020(05): 65-71 .
    20. 刘建坤,蒋廷学,卞晓冰,苏瑗,刘世华,魏娟明. 常压页岩气低成本高效压裂技术对策. 钻井液与完井液. 2020(03): 377-383 .
    21. 张扬,赵永刚,闫永强,王海兵,杨晓影,王强. 页岩储层新型清洁滑溜水压裂液体系. 钻采工艺. 2020(04): 89-92+11 .
    22. 孟强,范锦锋,艾生军,刘刚,杨文斌,吴昊. 新型高效减阻剂研究及应用. 钻采工艺. 2020(04): 97-100+12 .
    23. 李嘉,李德旗,孙亚东,李然,张祥枫. 可变黏多功能压裂液体系及应用. 钻采工艺. 2020(04): 105-107+12 .
    24. 甄怀宾,陈帅,贾振福,李曙光,余丽珠. 致密气藏用乳液清洁压裂液的研究与应用. 应用化工. 2020(S1): 62-65+70 .
    25. 张晓虎,于世虎,周仲建,孙亚东,李嘉. 页岩气井用乳液型超分子压裂液制备与应用. 钻井液与完井液. 2019(01): 120-125 .
    26. 何静,王满学,吴金桥,王敏. 多功能滑溜水减阻剂的制备及性能评价. 油田化学. 2019(01): 48-52 .
    27. 闫秀,陈孝红,胡光,王冰,魏巍. FLICK减阻剂低温低伤害滑溜水研究与现场应用. 化学世界. 2019(05): 315-320 .
    28. 吴安林,李嘉,孙亚东,张晓虎,于世虎. 威远区块复合压裂液体系性能评价与应用. 新疆石油天然气. 2019(02): 85-87+5 .
    29. 贾金亚,魏娟明,贾文峰,眭世元,王程程,赵雄虎,穆代峰. 页岩气压裂用滑溜水胶液一体化稠化剂研究. 应用化工. 2019(06): 1247-1250 .
    30. 张锦宏. 中国石化石油工程技术现状及发展建议. 石油钻探技术. 2019(03): 9-17 . 本站查看
    31. 周仲建,于世虎,张晓虎. 页岩气用复合增效压裂液的研究与应用. 钻采工艺. 2019(04): 89-92+11-12 .
    32. 杨国旗,刘芳,程刚. 非常规天然气储层改造所用减阻剂的研究现状. 化工技术与开发. 2018(02): 41-42+51 .
    33. 李永飞,王彦玲,曹勋臣,刘飞,金碧涛,王刚霄. 页岩储层压裂用减阻剂的研究及应用进展. 精细化工. 2018(01): 1-9 .
    34. 陈馥,何雪梅,卜涛,吴红军,杨洋. 耐盐减阻剂的制备及性能评价. 精细石油化工. 2018(01): 51-55 .
    35. 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望. 石油钻探技术. 2018(01): 1-9 . 本站查看
    36. 冯潇霄,谢佩兰,代晓东,张忠达,王艳丽,杨光辉,李义扬. 液相流体加剂减阻相关理论及其应用进展. 节能. 2017(03): 4-8+2 .
    37. 李旭晖,郭丽梅,管保山,梁利,刘萍. 一种抗盐型丙烯酰胺共聚物的合成与评价. 石油化工. 2017(10): 1313-1318 .
    38. 黄召,何福耀,雷磊,丁建平,严维锋,谢中成. 新型高效抗磨减阻剂在东海油气田的应用. 钻井液与完井液. 2017(04): 49-54 .
    39. 孟磊,周福建,刘晓瑞,杨钊,石华强. 滑溜水用减阻剂室内性能测试与现场摩阻预测. 钻井液与完井液. 2017(03): 105-110 .
    40. 张锋三,沈一丁,王磊,马国艳,苏莹,任婷. 聚丙烯酰胺压裂液减阻剂的合成及性能. 化工进展. 2016(11): 3640-3644 .
    41. 马国艳,沈一丁,李楷,王小荣,郭兴. 滑溜水压裂液用聚合物减阻剂性能. 精细化工. 2016(11): 1295-1300 .
    42. 张锋三,沈一丁,任婷,苏莹. 聚丙烯酰胺压裂液减阻剂的合成及性能. 精细化工. 2016(12): 1422-1427 .
    43. 张亚东,苏雪霞,孙举,姜江. 国内压裂用减阻剂的研究及应用进展. 精细石油化工进展. 2016(04): 8-11 .
    44. 苏雪霞,李晓岚,孙举,谢娟,宋亚静. 耐盐速溶减阻剂的合成及其性能. 精细石油化工. 2016(06): 51-55 .
    45. 杨帆,王琳,林永学,杨小华,董晓强,王海波. 减阻水压裂液用黏土稳定剂的合成与应用. 钻井液与完井液. 2016(04): 109-113 .
    46. 张红妮,陈井亭. 低渗透油田蓄能整体压裂技术研究——以吉林油田外围井区为例. 非常规油气. 2015(05): 55-60 .
    47. 杜凯,林蔚然,祝纶宇,刘希,杜超,方昭. 生物基反相乳液型降阻剂与滑溜水体系的研发与评价. 化工新型材料. 2015(05): 215-217 .

    Other cited types(19)

Catalog

    Article Metrics

    Article views (86) PDF downloads (28) Cited by(66)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return