WU Baizhi, YANG Zhen, GUO Tongzheng, et al. Response characteristics of logging While drilling system with multi-scale azimuthaWl electromagnetic waves [J]. Petroleum Drilling Techniques,2022, 50(6):7-13. DOI: 10.11911/syztjs.2022107
Citation: WU Baizhi, YANG Zhen, GUO Tongzheng, et al. Response characteristics of logging While drilling system with multi-scale azimuthaWl electromagnetic waves [J]. Petroleum Drilling Techniques,2022, 50(6):7-13. DOI: 10.11911/syztjs.2022107

Response Characteristics of Logging While Drilling System with Multi-Scale Azimuthal Electromagnetic Waves

More Information
  • Received Date: July 28, 2022
  • Revised Date: October 08, 2022
  • Available Online: November 14, 2022
  • In order to detect changes in stratigraphic structures in time, and accurately evaluate formation while avoiding drilling risks, logging while drilling (LWD) instruments are required with adequate depth of detection (DOD) and higher resolution. However, the measurement results of a single scale LWD cannot simultaneously satisfy the stated requirements. Therefore, the detection characteristics of ultra-deep azimuthal electromagnetic wave LWD and a conventional one were simulated and investigated, and the boundary detection ability and resolution of the system were analyzed as well. Meanwhile, the detection effect of undrilled formation interface was also explored. Moreover, the quasi-Newton method was used to perform accurate and fast inversion of data from LWD with multi-scale azimuthal electromagnetic waves. The study results showed that by increasing the coil spacing and reducing the frequency, the LWD with ultra-deep azimuthal electromagnetic waves could have a boundary detection ability of tens of meters. Combined with a small-scale azimuthal electromagnetic wave LWD, the real-time resistivity profile of reservoirs through inversion could be obtained, so as to bring about geological prediction, geosteering, and reservoir characterization in the vicinity of wellbore and farther away.

  • [1]
    SEYDOUX J, LEGENDRE E, MIRTO E, et al. Full 3D deep directional resistivity measurements optimize well placement and provide reservoir-scale imaging while drilling[R]. SPWLA-2014-LLLL, 2014.
    [2]
    YUAN Xiyong, DENG Shaogui, LI Zhiqiang, et al. Deep-detection of formation boundary using transient multicomponent electromagnetic logging measurements[J]. Petroleum Science, 2022, 19(3): 1085–1098. doi: 10.1016/j.petsci.2021.12.016
    [3]
    WU Zhenguan, FAN Yiren, WANG Jiawei, et al. Application of 2.5-D finite difference method in logging-while-drilling electromagnetic measurements for complex scenarios[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4): 577–581. doi: 10.1109/LGRS.2019.2926740
    [4]
    OMERAGIC D, LI Q, CHOU L, et al. Deep directional electromagnetic measurements for optimal well placement[R]. SPE 97045, 2005.
    [5]
    BITTAR M, KLEIN J, BESTE R, et al. A new azimuthal deep-reading resistivity tool for geosteering and advanced formation evaluation[J]. SPE Reservoir Evaluation & Engineering, 2009, 12(2): 270–279.
    [6]
    LI Shanjun, CHEN Jiefu, BINFORD T L, Jr, et al. Using new LWD measurements to evaluate formation resistivity anisotropy at any dip angle[R]. SPWLA-2014-EEEE, 2014.
    [7]
    杨震,杨锦舟,韩来聚,等. 随钻方位电磁波界面探测性能分析[J]. 石油学报,2016,37(7):930–938. doi: 10.1038/aps.2016.55

    YANG Zhen, YANG Jinzhou, HAN Laiju, et al. Interface detection performance analysis of azimuthal electromagnetic while drilling[J]. Acta Petrolei Sinica, 2016, 37(7): 930–938. doi: 10.1038/aps.2016.55
    [8]
    杨震,杨锦舟,韩来聚. 随钻方位电磁波电阻率成像模拟及应用[J]. 吉林大学学报(地球科学版),2013,43(6):2035–2043. doi: 10.13278/j.cnki.jjuese.2013.06.023

    YANG Zhen, YANG Jinzhou, HAN Laiju. Numerical simulation and application of azimuthal propagation resistivity imaging while drilling[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 2035–2043. doi: 10.13278/j.cnki.jjuese.2013.06.023
    [9]
    刘乃震,王忠,刘策. 随钻电磁波传播方位电阻率仪地质导向关键技术[J]. 地球物理学报,2015,58(5):1767–1775.

    LIU Naizhen, WANG Zhong, LIU Ce. Theories and key techniques of directional electromagnetic propagation resistivity tool for geosteering applications while drilling[J]. Chinese Journal of Geophysics, 2015, 58(5): 1767–1775.
    [10]
    岳喜洲,刘天淋,李国玉,等. 随钻方位电磁波测井响应快速正演方法与地质导向应用[J]. 地球物理学报,2022,65(5):1909–1920.

    YUE Xizhou, LIU Tianlin, LI Guoyu, et al. An analytically fast forward method of LWD azimuthal electromagnetic measurement and its geo-steering application[J]. Chinese Journal of Geophysics, 2022, 65(5): 1909–1920.
    [11]
    WU H H, GOLLA C, PARKER T, et al. A new ultra-deep azimuthal electromagnetic LWD sensor for reservoir insight[R]. SPWLA-2018-X, 2018.
    [12]
    HARTMANN A, VIANNA A, MAURER H M, et al. Verification testing of a new extra-deep azimuthal resistivity measurement[R]. SPWLA-2014-MM, 2014.
    [13]
    张盼,邓少贵,胡旭飞,等. 超深随钻方位电磁波测井探测特性及参数敏感性分析[J]. 地球物理学报,2021,64(6):2210–2219.

    ZHANG Pan, DENG Shaogui, HU Xufei, et al. Detection performance and sensitivity of logging-while-drilling extra-deep azimuthal resistivity measurement[J]. Chinese Journal of Geophysics, 2021, 64(6): 2210–2219.
    [14]
    肖加奇,张国艳,洪德成,等. 层状各向异性地层中三维感应测井响应快速计算及资料处理[J]. 地球物理学报,2013,56(2):696–706.

    XIAO Jiaqi, ZHANG Guoyan, HONG Decheng, et al. Fast forward modeling and data processing of 3D induction logging tool in layered anisotropic formation[J]. Chinese Journal of Geophysics, 2013, 56(2): 696–706.
    [15]
    魏宝君,田坤,张旭,等. 定向电磁波传播随钻测量基本理论及其在地层界面预测中的应用[J]. 地球物理学报,2010,53(10):2507–2515.

    WEI Baojun, TIAN Kun, ZHANG Xu, et al. Physics of directional electromagnetic propagation measurements-while-drilling and its application for forecasting formation boundaries[J]. Chinese Journal of Geophysics, 2010, 53(10): 2507–2515.
    [16]
    黄明泉,杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术,2020,48(1):114–119. doi: 10.11911/syztjs.2019132

    HUANG Mingquan, YANG Zhen. Simulation to determine depth of detection and response characteristics while drilling of an ultra-deep electromagnetic wave instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114–119. doi: 10.11911/syztjs.2019132
    [17]
    SEYDOUX J, DENICHOU J M, AMIR I, et al. Real-time EM look-ahead: A maturing technology to decrease drilling risk in low inclination wells[R]. SPWLA-2019-GGGG, 2019.
    [18]
    胡旭飞,范宜仁,吴非,等. 随钻方位电磁波测井多参数快速反演[J]. 地球物理学报,2018,61(11):4690–4701. doi: 10.6038/cjg2018L0746

    HU Xufei, FAN Yiren, WU Fei, et al. Fast multiple parameter inversion of azimuthal LWD electromagnetic measurement[J]. Chinese Journal of Geophysics, 2018, 61(11): 4690–4701. doi: 10.6038/cjg2018L0746
    [19]
    王磊,刘英明,王才志,等. 水平井随钻电磁波测井实时正反演方法[J]. 石油勘探与开发,2021,48(1):139–147. doi: 10.11698/PED.2021.01.12

    WANG Lei, LIU Yingming, WANG Caizhi, et al. Real-time forward modeling and inversion of logging-while-drilling electromagnetic measurements in horizontal wells[J]. Petroleum Exploration and Development, 2021, 48(1): 139–147. doi: 10.11698/PED.2021.01.12
  • Cited by

    Periodical cited type(8)

    1. 陈佳,郭玉祥,董丽娟,樊恒. 远探测随钻方位电磁波测井参数分析与优选. 石油管材与仪器. 2025(02): 67-76 .
    2. 李丰波. 随钻多深度多频率电阻率测井设备关键技术研究. 高技术通讯. 2025(02): 198-204 .
    3. 柳贡慧,查春青,陈添,汪伟. 深层超深层油气安全高效开发若干关键问题与新型解决方案. 石油钻探技术. 2024(02): 24-30 . 本站查看
    4. 王春伟,杜焕福,董佑桓,孙鑫,侯文辉,艾亚博,杜淑艳,刘桂华,柳启明. 泌阳凹陷页岩油水平井随钻定测录导一体化模式探索. 断块油气田. 2024(03): 424-431 .
    5. 艾昆,韩玉娇,高源. 随钻方位侧向电阻率测井电极系设计及响应模拟. 石油钻探技术. 2024(03): 127-136 . 本站查看
    6. 田山川,甘仁忠,肖琳,丁乙,魏瑞华,陈晓文,徐永华,梁利喜. 准噶尔盆地南缘异常高压泥岩段地层压力预测方法. 特种油气藏. 2024(05): 20-30 .
    7. 康正明,秦浩杰,张意,李新,倪卫宁,李丰波. 基于LSTM神经网络的随钻方位电磁波测井数据反演. 石油钻探技术. 2023(02): 116-124 . 本站查看
    8. 李辉,谭忠健,耿长喜,邓津辉,张志虎,张立刚,李文元,李浩. 基于随钻录井工程参数的变质岩潜山储层物性预测方法及应用. 特种油气藏. 2023(06): 10-15 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (457) PDF downloads (137) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return