Citation: | KUANG Shaohua, LYU Min, YANG Hong, et al. Performance evaluation of sand control material of swelling shape-memory particles [J]. Petroleum Drilling Techniques,2022, 50(5):88-93. DOI: 10.11911/syztjs.2022101 |
To solve the problem of sand production that occurs during oil and gas well exploitation, a new sand control method of filling perforation channels with a temperature-sensitive shape-memory polymer was proposed with the goals of simplifying the construction procedure, reducing sand control cost, and prolonging the effective period of sand control. Shape-memory polyurethane foam was selected as the raw material, processed into irregular particles of 3–6 mm in particle size, then coated with epoxy resin and curing agents on the outer surface. A sand control material of swelling particles was thus prepared, and its swelling performance, temperature resistance, compressive strength, flow performance, sand retention, and medium resistance were evaluated by testing. The results showed that this sand control material started to swell at the temperature of 60–70 °C and its maximum adaptive temperature was 90 °C. With a swelling coefficient of 200%, this material could form a monolithic sand retention barrier after it swelled and cemented in a confined space. The barrier exhibited a compressive strength of 4.5 MPa and a permeability of 90 D. It is capable of retaining formation sand above 0.15 mm in particle size. The flow performance and anti-clogging ability of the proposed material were significantly superior to those of the sand control material of resin-coated sand. The proposed sand control material deserves promotion and application because the sand retention barrier it forms when applied to sand control is highly permeable, high-strength, and anti-clogging, and sand control with this material has the advantages of low cost, simple construction, and leaving no strings.
[1] |
董长银. 油气井防砂技术[M]. 北京: 中国石化出版社, 2009.
DONG Changyin. Sand control technology in oil and gas wells[M]. Beijing: China Petrochemical Press , 2009.
|
[2] |
朱光明,魏堃,王坤. 形状记忆聚合物及其在航空航天领域中的应用[J]. 高分子材料科学与工程,2010,26(8):168–171. doi: 10.16865/j.cnki.1000-7555.2010.08.046
ZHU Guangming, WEI Kun, WANG Kun. Shape memory polymers for aeronautic & space applications[J]. Polymer Materials Science & Engineering, 2010, 26(8): 168–171. doi: 10.16865/j.cnki.1000-7555.2010.08.046
|
[3] |
张新民. 智能材料研究进展[J]. 玻璃钢/复合材料,2013(6):57–63.
ZHANG Xinmin. The research process of smart materials[J]. Fiber Reinforced plastics/Composites, 2013(6): 57–63.
|
[4] |
MANSOUR A, EAEAKACHA C, TALEGHANI A D, et al. Smart lost circulation materials for productive zones[R]. SPE 187099, 2017.
|
[5] |
SANTOS L, TALEGHANI A D, LI Guoqiang. Expandable diverting agents to improve efficiency of refracturing treatments[R]. URTEC 2697493, 2017.
|
[6] |
TAKEGHANI A D, LI Guoqiang, MOAYERI M. The use of temperature-triggered polymers to seal cement voids and fractures in wells[R]. SPE 181384, 2016.
|
[7] |
SANTOS L, TALEGHANI A D, LI Guoqiang. Smart expandable proppants to achieve sustainable hydraulic fracturing treatments[R]. SPE 181391, 2016.
|
[8] |
暴丹,邱正松,赵欣,等. 基于温敏形状记忆特性的智能化堵漏材料研究展望[J]. 钻井液与完井液,2019,36(3):265–272. doi: 10.3969/j.issn.1001-5620.2019.03.001
BAO Dan, QIU Zhengsong, ZHAO Xin, et al. Outlook on the research on intelligent LCM with temperature sensitive shape memory property[J]. Drilling Fluid & Completion Fluid, 2019, 36(3): 265–272. doi: 10.3969/j.issn.1001-5620.2019.03.001
|
[9] |
暴丹,邱正松,叶链,等. 热致形状记忆“智能”型堵漏剂的制备与特性实验[J]. 石油学报,2020,41(1):106–115. doi: 10.7623/syxb202001010
BAO Dan, QIU Zhengsong, YE Lian, et al. Preparation and characteristic experiment of thermotropic shape memory “intelligent” plugging agent[J]. Acta Petrolei Sinica, 2020, 41(1): 106–115. doi: 10.7623/syxb202001010
|
[10] |
王照辉,崔凯潇,蒋官澄,等. 基于形状记忆环氧树脂聚合物的温敏可膨胀型堵漏剂研制及性能评价[J]. 钻井液与完井液,2020,37(4):412. doi: 10.3969/j.issn.1001-5620.2020.04.002
WANG Zhaohui, CUI Kaixiao, JIANG Guancheng,et al. Development and evaluation of a temperature-sensitive expandable lost circulation material made from a shape memory epoxy polymer[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 412. doi: 10.3969/j.issn.1001-5620.2020.04.002
|
[11] |
王宝田,杨倩云,杨华. 形状记忆聚合物型温控膨胀堵漏剂SDP 制备技术[J]. 钻井液与完井液,2022,39(1):41–45. doi: 10.12358/j.issn.1001-5620.2022.01.007
WANG Baotian, YANG Qianyun, YANG Hua. Research on preparation technology of temperature-controlled expansion plugging agent based on shape memory polymer[J]. Drilling Fluid & Completion Fluid, 2022, 39(1): 41–45. doi: 10.12358/j.issn.1001-5620.2022.01.007
|
[12] |
WANG Xiuli. OSUNJATE G. Advancement in openhole sand control applications using shape memory polyer[R]. SPE 181361, 2016.
|
[13] |
OSUNJAYE G, ABDELFATTAH T. Open hole sand control optimization using shape memory polymer conformable screen with inflow control application[R]. SPE 183947, 2017.
|
[14] |
孙德旭,陈雪,梁伟,等. 聚氨酯类自膨胀防砂材料制备及性能评价[J]. 油田化学,2017,34(2):217–221. doi: 10.19346/j.cnki.1000-4092.2017.02.006
SUN Dexu, CHEN Xue, LIANG Wei, et al. Preparation and performance evaluation of polyurethane-expandable material in sand control[J]. Oilfield Chemistry, 2017, 34(2): 217–221. doi: 10.19346/j.cnki.1000-4092.2017.02.006
|
[15] |
段友智,艾爽,刘欢乐,等. 形状记忆筛管自充填防砂完井技术[J]. 石油钻探技术,2019,47(5):86–90.
DUAN Youzhi, AI Shuang, LIU Huanle, et al. Shape memory screen self-packing sand control completion technology[J]. Petroleum Drilling Techniques, 2019, 47(5): 86–90.
|
[16] |
段友智,刘欢乐,艾爽,等. 形状记忆筛管膨胀性能测试[J]. 石油钻探技术,2020,48(4):83–88. doi: 10.11911/syztjs.2020038
DUAN Youzhi, LIU Huanle, AI Shuang, et al. Test of the expansion performance for shape memory screens[J]. Petroleum Drilling Techniques, 2020, 48(4): 83–88. doi: 10.11911/syztjs.2020038
|
[17] |
段友智,侯倩,刘锦春,等. 完井用多孔隙形状记忆聚合物的性能影响因素研究[J]. 石油钻探技术,2020,49(2):67–71.
DUAN Youzhi, HOU Qian, LIU Jinchun, et al. Study on the influencing factors of the properties of porous shape memory polymer for well completion[J]. Petroleum Drilling Techniques, 2020, 49(2): 67–71.
|
[18] |
何生厚, 张琪. 油气井防砂理论及其应用[M]. 北京: 中国石化出版社, 2003.
HE Shenghou, ZHANG Qi. Theory and application of sand control in oil and gas wells[M]. Beijing: China Petrochemical Press , 2003.
|
[19] |
张琪. 采油工程原理与设计[M]. 东营: 石油大学出版社, 2000.
ZHANG Qi. Principle and design of oil production engineering[M]. Dongying: Petroleum University Press, 2000.
|
[20] |
李怀文, 孙涛, 王超, 等. 超低温新型树脂涂敷砂及人工井壁防砂技术[J]. 石油学报, 2016, 37(增刊2): 112−116.
LI Huaiwen, SUN Tao, WANG Chao, et al. The new ultralow-temperature resin coated sand and artificial borehole wall sand control technology[J]. Acta Petrolei Sinica, 2016, 37(supplement 2): 112−116.
|
[21] |
何平笙. 新编高聚物的结构与性能[M]. 北京: 科学出版社, 2009.
HE Pingsheng. New edition of structure and properties of polymer[M]. Beijing: Science Press, 2009.
|
[22] |
SY/T 5270—2000 化学防砂人工岩心抗折强度、抗压强度及气体渗透率的测定[S].
SY/T 5270—2000 Test method for flexural strength, compression strength and air permeability of chemical sand consolidation in man-made core[S].
|
[23] |
SY/T 5274—2016 树脂涂覆砂技术要求[S].
SY/T 5274—2016 Technical requirements resin coated san[S].
|
[1] | ZHANG Hui, TAN Shaoxu, HUO Tongda, ZHAO Chenglong, ZHOU Zhankai, PEI Bailin. Integrated Completion Technology of Water and Sand Control in Reservoirs with Extra-High Porosity and Permeability in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2024, 52(1): 107-113. DOI: 10.11911/syztjs.2024015 |
[2] | ZHOU Hongyu, WAN Xiaojin, WU Shaowei, ZHANG Bin, KONG Yang. Study on the Sand Control Technique for Gravel Packing with Water Control for Horizontal Wells[J]. Petroleum Drilling Techniques, 2021, 49(1): 101-106. DOI: 10.11911/syztjs.2020138 |
[3] | DUAN Youzhi, LIU Huanle, AI Shuang, QIN Xing, YUE Hui, LIU Boang. Test of the Expansion Performance for Shape Memory Screens[J]. Petroleum Drilling Techniques, 2020, 48(4): 83-88. DOI: 10.11911/syztjs.2020038 |
[4] | DUAN Youzhi, AI Shuang, LIU Huanle, YUE Hui. Shape Memory Screen Self-Packing Sand Control Completion Technology[J]. Petroleum Drilling Techniques, 2019, 47(5): 86-90. DOI: 10.11911/syztjs.2019106 |
[5] | HAO Zhouzheng, ZUO Kai, LIU Yuming, LI Ning, WEI Aishuan, WANG Mingjie. Research and Testing of the Integrated String for Cementing and Controlling Sand in a Medium-Short Radius Wellbore[J]. Petroleum Drilling Techniques, 2019, 47(2): 99-104. DOI: 10.11911/syztjs.2019012 |
[6] | PANG Wei, LIU Liming, HE Zuqing, HE Tong, WANG Guohua. A Dynamic Prediction Method for Segmental Flow Performance in Horizontal Wells Based on Node Networks[J]. Petroleum Drilling Techniques, 2019, 47(2): 93-98. DOI: 10.11911/syztjs.2019006 |
[7] | Chen Cheng, Yao Xiao, Wu Mingming, Song Jinbo. Interface Mechanical Model of Mineral Fiber-Resin Coated Sand[J]. Petroleum Drilling Techniques, 2014, 42(4): 86-90. DOI: 10.3969/j.issn.1001-0890.2014.04.016 |
[8] | Zhao Yizhong, Sun Sangdun, Gao Aihua, Zhi Qingong, Li Peng. Long-Term Sand Control Technology for Multiple Round Steam Huff and Puff Wells in Heavy Oil Reservoirs[J]. Petroleum Drilling Techniques, 2014, 42(3): 90-94. DOI: 10.3969/j.issn.1001-0890.2014.03.017 |
[9] | Shi Jin, Li Peng, Jia Jianghong. Laboratory Testing of Sand Control Effect for Mesh Type Screen[J]. Petroleum Drilling Techniques, 2013, 41(3): 104-108. DOI: 10.3969/j.issn.1001-0890.2013.03.020 |
[10] | Wang Lihua, Lou Yishan, Deng Jingen, Ma Xiaoyong, Chen Yu. Optimization of Sand Control Methods and Parameters Selection for Shallow-Gas Fields in Deep-Water[J]. Petroleum Drilling Techniques, 2013, 41(1): 98-102. DOI: 10.3969/j.issn.1001-0890.2013.01.019 |