ZHANG Jing, ZHENG Bin, LI Hongying, LIU Yujuan, YAN Zhiming. Quantitative Study of Vertical Sweep Degree Between Injection andProduction Wells in Thick Oil Layers[J]. Petroleum Drilling Techniques, 2022, 50(2): 118-125. DOI: 10.11911/syztjs.2021124
Citation: ZHANG Jing, ZHENG Bin, LI Hongying, LIU Yujuan, YAN Zhiming. Quantitative Study of Vertical Sweep Degree Between Injection andProduction Wells in Thick Oil Layers[J]. Petroleum Drilling Techniques, 2022, 50(2): 118-125. DOI: 10.11911/syztjs.2021124

Quantitative Study of Vertical Sweep Degree Between Injection andProduction Wells in Thick Oil Layers

More Information
  • Received Date: June 29, 2021
  • Revised Date: November 09, 2021
  • Accepted Date: January 02, 2022
  • Available Online: January 10, 2022
  • After a long-term scouring by injected water, the remaining oil distribution is scattered and vertical water flooding is extremely complex in reservoirs developed by water flooding, especially in the reservoirs with thick oil layers. For quantitative study of vertical sweep degree between injection and production wells in thick oil layers, motion equations of water droplets in planar and vertical directions were built based on seepage theory and giving due consideration to the oil-water two-phase flow, effective permeability, and density variation with saturation. A complete set of mathematical models describing the vertical sweep between injection and production wells in thick oil layers was developed. Taking L Oilfield as an example, according to the analysis results, the following findings could be found: a greater injection-production rate, a greater viscosity of crude oil, tighter injection-production well spacing, a lower permeability, a lower water cut, and a higher permeability change degree meant a higher vertical sweep degree of the injected water. Most affected by the thickness of the oil layers was the migration path of the water droplets instead of the sweep degree. Moreover, the injection-production rate limit in thick oil layers was 180 m3/d, and the viscosity limit of crude oil was 200 mPa·s.The limit of injection-production intensity was 3.00 m3/(d·m) when the oil layer thickness was fixed, and the limit of oil layer thickness was 30 m when the injection-production intensity was fixed. The results show that for the thick oil layers developed by water flooding, the injected water infiltrates downward due to gravity, which reduces the vertical sweep degree and recovery. In a nutshell, quantitatively evaluating the vertical sweep degree between injection and production wells in thick oil layers can provide theoretical guidance for understanding the remaining oil distribution and improving the vertical sweep degree.
  • [1]
    郭迎春,曲全工,曹小朋,等. 注采优化提高平面非均质低渗油藏井网水驱波及效率[J]. 石油钻采工艺,2020,42(2):214–221.

    GUO Yingchun, QU Quangong, CAO Xiaopeng, et al. Improvement of waterflooding sweeping efficiency of the well patterns in low-permeability oil reservoirs with plane heterogeneity based on injection and production optimization[J]. Oil Drilling & Production Technology, 2020, 42(2): 214–221.
    [2]
    宋先知,李嘉成,石宇,等. 多分支井地热系统注采性能室内实验研究[J]. 石油钻探技术,2021,49(1):81–87.

    SONG Xianzhi, LI Jiacheng, SHI Yu, et al. Laboratory-scale experimental study on the injection-production performance of a multilateral-well enhanced geothermal system[J]. Petroleum Drilling Techniques, 2021, 49(1): 81–87.
    [3]
    陈存良,马奎前,王相,等. 基于最大注水效率的平面均衡驱替方法[J]. 石油钻探技术,2021,49(3):124–128.

    CHEN Cunliang, MA Kuiqian, WANG Xiang, et al. Research on the planar equilibrium displacement based on maximum water injection efficiency[J]. Petroleum Drilling Techniques, 2021, 49(3): 124–128.
    [4]
    王朝明,孔令军,袁凯旋,等. 特高含水后期油藏水驱效果评价方法[J]. 石油钻探技术,2020,48(3):108–113.

    WANG Chaoming, KONG Lingjun, YUAN Kaixuan,et al. Evaluation method of water flooding effect in reservoirs with ultra-high water cut[J]. Petroleum Drilling Techniques, 2020, 48(3): 108–113.
    [5]
    郑松青,杨敏,康志江,等. 塔河油田缝洞型碳酸盐岩油藏水驱后剩余油分布主控因素与提高采收率途径[J]. 石油勘探与开发,2019,46(4):746–754. doi: 10.1016/S1876-3804(19)60232-6

    ZHENG Songqing, YANG Min, KANG Zhijiang, et al. Controlling factors of remaining oil distribution after water flooding and enhanced oil recovery methods for fracture-cavity carbonate reservoirs in Tahe Oilfield[J]. Petroleum Exploration and Development, 2019, 46(4): 746–754. doi: 10.1016/S1876-3804(19)60232-6
    [6]
    杨敏,李小波,谭涛,等. 古暗河油藏剩余油分布规律及挖潜对策研究:以塔河油田TK440井区为例[J]. 油气藏评价与开发,2020,10(2):43–48.

    YANG Min, LI Xiaobo, TAN Tao, et al. Remaining oil distribution and potential tapping measures for palaeo-subterranean river reservoirs: a case study of TK440 well area in Tahe Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(2): 43–48.
    [7]
    杨玲智,刘延青,胡改星,等. 长庆油田同心验封测调一体化分层注水技术[J]. 石油钻探技术,2020,48(2):113–117.

    YANG Lingzhi, LIU Yanqing, HU Gaixing, et al. Stratified water injection technology of concentric seal-check, logging and adjustment integration in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 113–117.
    [8]
    刘斌,张玉梅,张汶,等. 层内纵向非均质性对稠油油藏剩余油分布的影响研究[J]. 科学技术与工程,2015,15(26):161–164. doi: 10.3969/j.issn.1671-1815.2015.26.028

    LIU Bin, ZHANG Yumei, ZHANG Wen, et al. The vertical heterogeneity affecting of residual oil distribution in heavy oil reservoir[J]. Science Technology and Engineering, 2015, 15(26): 161–164. doi: 10.3969/j.issn.1671-1815.2015.26.028
    [9]
    王智林,杨胜来,雷浩,等. 海上厚油层注聚时机对波及效率及前缘的影响研究[J]. 科学技术与工程,2017,17(2):197–202. doi: 10.3969/j.issn.1671-1815.2017.02.034

    WANG Zhilin, YANG Shenglai, LEI Hao, et al. Influence of polymer injecting occasion on the sweep efficiency and sweep front in reservoirs with thick heterogeneous oil layers[J]. Science Technology and Engineering, 2017, 17(2): 197–202. doi: 10.3969/j.issn.1671-1815.2017.02.034
    [10]
    关云,曹仁义,徐锋,等. 厚油层水驱开发效果及其影响因素分析[J]. 断块油气田,2018,25(6):766–770.

    GUAN Yun, CAO Renyi, XU Feng, et al. Effect and influencing factors on water flooding development of thick reservoir[J]. Fault-Block Oil & Gas Field, 2018, 25(6): 766–770.
    [11]
    孙鹏霄,闫志明. LD10-1油田不同韵律性厚油层剩余油富集规律[J]. 中外能源,2020,25(9):41–48.

    SUN Pengxiao, YAN Zhiming. Enrichment law of remaining oil in different rhythmic thick oil reservoirs in LD10-1 Oilfield[J]. Sino-Global Energy, 2020, 25(9): 41–48.
    [12]
    张静,廖新武,闫志明. 井间夹层对厚油层剩余油分布的控制机理[J]. 中外能源,2020,25(8):34–40.

    ZHANG Jing, LIAO Xinwu, YAN Zhiming. Control mechanism of interlayer between wells on remaining oil distribution in thick reservoirs[J]. Sino-Global Energy, 2020, 25(8): 34–40.
    [13]
    张瑾琳,吴向红,晋剑利,等. 水驱厚层油藏纵向波及系数预测新模型[J]. 特种油气藏,2017,24(2):103–106. doi: 10.3969/j.issn.1006-6535.2017.02.020

    ZHANG Jinlin, WU Xianghong, JIN Jianli, et al. A new vertical sweep efficiency prediction model for water-flooding thick oil reservoirs[J]. Special Oil & Gas Reservoirs, 2017, 24(2): 103–106. doi: 10.3969/j.issn.1006-6535.2017.02.020
    [14]
    孙召勃,李云鹏,贾晓飞,等. 基于驱替定量表征的高含水油田注水井分层配注量确定方法[J]. 石油钻探技术,2018,46(2):87–91.

    SUN Zhaobo, LI Yunpeng, JIA Xiaofei, et al. A method to determine the layered injection allocation rates for water injection wells in high water cut oilfield based on displacement quantitative characterization[J]. Petroleum Drilling Techniques, 2018, 46(2): 87–91.
    [15]
    杜晓康,李治平,田丰. 偏心反九点井网见水波及系数研究[J]. 特种油气藏,2017,24(4):127–131. doi: 10.3969/j.issn.1006-6535.2017.04.024

    DU Xiaokang, LI Zhiping, TIAN Feng. Research on water breakthrough sweep efficiency of eccentric inverted nine spot flooding pattern[J]. Special Oil & Gas Reservoirs, 2017, 24(4): 127–131. doi: 10.3969/j.issn.1006-6535.2017.04.024
    [16]
    贾贻勇,李永康. 胜坨油田套损井分层注水及测调技术[J]. 石油钻探技术,2021,49(2):107–112.

    JIA Yiyong, LI Yongkang. Techniques of layering injection and the measurement-adjustment towards wells with casing damage in Shengtuo Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(2): 107–112.
    [17]
    翟云芳. 渗流力学[M]. 3版. 北京: 石油工业出版社, 2009.

    ZHAI Yunfang. Seepage mechanics[M]. 3rd ed. Beijing: Petroleum Industry Press, 2009.
    [18]
    WELGE H J. A simplified method for computing oil recovery by gas or water drive[J]. Journal of Petroleum Technology, 1952, 4(4): 91–98. doi: 10.2118/124-G
  • Related Articles

    [1]YU Haitang, DING Yi, LIU Yanmei, PENG Miao, LIANG Lixi, YU Xiaolong. A Dynamical Spontaneous Imbibition Model for ShaleConsidering Hydration Damage[J]. Petroleum Drilling Techniques, 2023, 51(5): 139-148. DOI: 10.11911/syztjs.2023054
    [2]WANG Tao, LI Yao, HE Hui. A Coupling Allocation Model of Finely Layered Water Injection Considering Pressure Constraint[J]. Petroleum Drilling Techniques, 2023, 51(2): 95-101. DOI: 10.11911/syztjs.2023012
    [3]ZHENG Chunfeng, WEI Chen, ZHANG Haitao, LI Ang, MENG Hongxia. A New Forecasting Model of a Wellbore Wax Deposition Profile in a Offshore Well[J]. Petroleum Drilling Techniques, 2017, 45(4): 103-109. DOI: 10.11911/syztjs.201704018
    [4]DENG Yong, CHEN Mian, JIN Yan, LU Yunhu, ZOU Daiwu. Prediction Model and Numerical Simulation for Rock Fissure Length under Impact Load[J]. Petroleum Drilling Techniques, 2016, 44(4): 41-46. DOI: 10.11911/syztjs.201604008
    [5]WENG Dingwei, FU Haifeng, LU Yongjun, ZHENG Lihui, MA Jianjun. A Model for Predicting the Volume of Stimulated Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(1): 95-100. DOI: 10.11911/syztjs.201601018
    [6]Ma Shuai, Zhang Fengbo, Hong Chuqiao, Liu Shuangqi, Zhong Jiajun, Wang Shichao. Development and Solution to the Coupling Model of the Productivity of Interbeded Reserviors in Stepped Horizontal Wells[J]. Petroleum Drilling Techniques, 2015, 43(5): 94-99. DOI: 10.11911/syztjs.201505016
    [7]Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015
    [8]Li Daqi, Kang Yili, Liu Xiushan, Chen Zengwei, Si Na. Progress in Drilling Fluid Loss Dynamics Model for Fractured Formations[J]. Petroleum Drilling Techniques, 2013, 41(4): 42-47. DOI: 10.3969/j.issn.1001-0890.2013.04.010
    [9]Wu Shinan, Zhang Jinlong, Ding Shidong, Liu Jian. Revision of Mathematical Model of Foamed Cement Slurry Density under Down-Hole Conditions[J]. Petroleum Drilling Techniques, 2013, 41(2): 28-33. DOI: 10.3969/j.issn.1001-0890.2013.02.006
    [10]Meng Hongxia, Chen Dechun, Pan Zhihua, Wu Xiaodong. Productivity Calculation Models and Stimulation Ratio Analysis for Explosive Fracturing Wells[J]. Petroleum Drilling Techniques, 2012, 40(6): 62-66. DOI: 10.3969/j.issn.1001-0890.2012.06.013
  • Cited by

    Periodical cited type(17)

    1. 蒲文学,李伟,王宇飞,赵海滨,薄玉冰,林珂. 胜利页岩油牛页一区试验井组旋转导向钻井技术. 石油钻探技术. 2025(01): 24-30 . 本站查看
    2. 刘士林,张鹏飞,邱贻博,冯建伟,刘水珍. 博兴洼陷沙四段上亚段—沙三段下亚段地应力特征. 油气地质与采收率. 2025(02): 36-50 .
    3. 王春伟,杜焕福,董佑桓,孙鑫,侯文辉,艾亚博,杜淑艳,刘桂华,柳启明. 泌阳凹陷页岩油水平井随钻定测录导一体化模式探索. 断块油气田. 2024(03): 424-431 .
    4. 秦春,刘纯仁,李玉枝,王治国,陈文可. 苏北断块页岩油水平井钻井提速关键技术. 石油钻探技术. 2024(06): 30-36 . 本站查看
    5. 张锦宏. 中国石化页岩油工程技术新进展. 油气藏评价与开发. 2023(01): 1-8 .
    6. 李志明,孙中良,黎茂稳,曹婷婷,李政,刘鹏,蒋启贵,钱门辉,陶国亮. 济阳坳陷第一轮页岩油探井“失利”原因剖析. 地球科学. 2023(01): 143-157 .
    7. 袁建强. 济阳坳陷页岩油多层立体开发关键工程技术. 石油钻探技术. 2023(01): 1-8 . 本站查看
    8. 于雷,李公让,王宝田,张高峰,张守文,明玉广. 一种新型亲油纤维堵漏剂的研发. 天然气工业. 2023(06): 112-118 .
    9. 来建强,鲁港,周超,鲁天骐. 井眼轨道模型中的数值积分计算. 石油钻探技术. 2023(03): 45-50 . 本站查看
    10. 杨雪山,窦正道,丁少华,赵进. 一趟钻关键技术在HY1-1HF井的研究与应用. 复杂油气藏. 2023(02): 149-153 .
    11. 张锦宏,周爱照,成海,毕研涛. 中国石化石油工程技术新进展与展望. 石油钻探技术. 2023(04): 149-158 . 本站查看
    12. 鲁港,王海涛,李杉,李雪松,杨志国,王建华,邱晨. 三维七段制圆弧型井眼轨道设计的拟解析解. 石油学报. 2023(09): 1545-1551 .
    13. 何立成. 胜利油田沙河街组页岩油水平井固井技术. 石油钻探技术. 2022(02): 45-50 . 本站查看
    14. 李玉海,李博,柳长鹏,郑瑞强,李相勇,纪博. 大庆油田页岩油水平井钻井提速技术. 石油钻探技术. 2022(05): 9-13 . 本站查看
    15. 秦春,刘纯仁,陈文可,唐玉华,曹林云. 苏北盆地HY1HF井钻完井关键技术. 复杂油气藏. 2022(03): 17-23 .
    16. 杜焕福,董佑桓,侯文辉,王春伟,孙鑫,杜淑艳,叶应贵. 定测录导一体化在提升水平井储层钻遇率中的应用. 中国地质调查. 2022(06): 1-9 .
    17. 李志明,孙中良,黎茂稳,曹婷婷,钱门辉,马晓潇,刘鹏,鲍云杰,蒋启贵,陶国亮,张隽,芮晓庆. 陆相基质型页岩油甜点区成熟度界限探讨——以渤海湾盆地东营凹陷沙三下—沙四上亚段为例. 石油实验地质. 2021(05): 767-775 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (328) PDF downloads (40) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return