SHU Yiyong, SUN Jun, ZENG Dong, XU Sixu, ZHOU Huaan, XI Yunfei. Study and Field Test of Drilling Fluid with Constant Rheology at High Temperature in West Yueman Block, Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 39-45. DOI: 10.11911/syztjs.2021037
Citation: SHU Yiyong, SUN Jun, ZENG Dong, XU Sixu, ZHOU Huaan, XI Yunfei. Study and Field Test of Drilling Fluid with Constant Rheology at High Temperature in West Yueman Block, Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 39-45. DOI: 10.11911/syztjs.2021037

Study and Field Test of Drilling Fluid with Constant Rheology at High Temperature in West Yueman Block, Tarim Oilfield

More Information
  • Received Date: August 29, 2020
  • Revised Date: February 08, 2021
  • Available Online: May 12, 2021
  • Safe density window of drilling fluids in the deep formations of the West Yueman Block in Tarim Oilfield is narrow, and as a result, downhole complications such as lost circulation, well collapse, drill string sticking, and salt water contamination are frequently encountered. Some drawbacks exist in available drilling fluids including thickening at high temperature and a weak resistance to pollution by CO32–/ HCO3 and poor quality soil. In this paper, a drilling fluid with constant rheology at high temperature was studied, with a high-temperature-resistant polymer fluid loss additive (APS220) and a new high-temperature stabilizer (HTS220) as the base. The basic formula was determined on the basis of the performance analysis of the main agents. Laboratory tests were performed to evaluate the constant rheology at high temperature and the resistance to CO32– / HCO3 and sodium bentonite pollution of the drilling fluid. The results showed that, the drilling fluid had a plastic viscosity ratio of 1.3, dynamic shear ratio of 1.5, initial shear ratio of 1.7 and final shear ratio of 1.2 at 100 °C and 180 °C. As temperatures rose, it presented a variation range of rheological parameters significantly lower than that of other commonly used drilling fluids, with the resistance to pollution by 2% CO32– / HCO3 and 10% sodium bentonite. In the field test of two wells in the West Yueman Block, the drilling fluid demonstrated stable rheological properties, with smooth drilled borehole and considerable downhole complication reduction.
  • [1]
    林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术,2019,47(3):113–120.

    LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113–120.
    [2]
    袁国栋,王鸿远,陈宗琦,等. 塔里木盆地满深1井超深井钻井关键技术[J]. 石油钻探技术,2020,48(4):21–27.

    YUAN Guodong, WANG Hongyuan, CHEN Zongqi,et al. Key drilling technologies for the ultra-deep Well Manshen 1 in the Tarim Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 21–27.
    [3]
    于得水,徐泓,吴修振,等. 满深1井奥陶系桑塔木组高性能防塌水基钻井液技术[J]. 石油钻探技术,2020,48(5):49–54.

    YU Deshui, XU Hong, WU Xiuzhen, et al. High performance anti-sloughing water based drilling fluid technology for Well Manshen 1 in the Ordovician Sangtamu Formation[J]. Petroleum Drilling Techniques, 2020, 48(5): 49–54.
    [4]
    谭万仓,邵红君,王力娟,等. 致密砂岩盖层特征及分类评价标准:以满加尔–英吉苏凹陷为例[J]. 断块油气田,2020,27(3):304–308.

    TAN Wancang, SHAO Hongjun, WANG Lijuan, et al. Characteristics and classification evaluation criteria of tight sandstone caprock:taking Manjiaer-Yingjisu Sag as an example[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 304–308.
    [5]
    李怀科,罗健生,耿铁,等. 国内外深水钻井液技术进展[J]. 钻井液与完井液,2015,32(6):85–88.

    LI Huaike, LUO Jiansheng, GENG Tie, et al. Technical progress of deep water drilling fluids in China and abroad[J]. Drilling Fluid & Completion Fluid, 2015, 32(6): 85–88.
    [6]
    高涵,许林,许明标,等. 深水水基恒流变钻井液流变特性研究[J]. 钻井液与完井液,2018,35(3):60–67. doi: 10.3969/j.issn.1001-5620.2018.03.010

    GAO Han, XU Lin, XU Mingbiao, et al. Study on rheology of consistent rheology water base drilling fluid for deep water drilling[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 60–67. doi: 10.3969/j.issn.1001-5620.2018.03.010
    [7]
    黄孟,许林,许洁,等. 水基恒流变钻井液流型调节剂的制备与性能评价[J]. 油田化学,2018,35(2):191–196.

    HUANG Meng, XU Lin, XU Jie, et al. Evaluation on preparation and performance of rheological modifier used in flat-rheology water-based drilling fluid[J]. Oilfield Chemistry, 2018, 35(2): 191–196.
    [8]
    程智,仇盛南,曹靖瑜,等. 长裸眼随钻防漏封堵技术在跃满3-3井的应用[J]. 石油钻采工艺,2016,38 (5):612–616.

    CHENG Zhi, QIU Shengnan, CAO Jingyu, et al. Application of plugging-while-drilling technology in long open-hole interval of the Well Yueman-3-3[J]. Oil Drilling & Production Technology, 2016, 38 (5): 612–616.
    [9]
    朱宽亮,王富华,徐同台,等. 抗高温水基钻井液技术研究与应用现状及发展趋势(I)[J]. 钻井液与完井液,2009,26(5):60–68, 78. doi: 10.3969/j.issn.1001-5620.2009.05.020

    ZHU Kuanliang, WANG Fuhua, XU Tongtai, et al. Study and application of high temperature drilling fluids (I)[J]. Drilling Fluid & Completion Fluid, 2009, 26(5): 60–68, 78. doi: 10.3969/j.issn.1001-5620.2009.05.020
    [10]
    朱宽亮,王富华,徐同台,等. 抗高温水基钻井液技术研究与应用现状及发展趋势(II)[J]. 钻井液与完井液,2009,26(6):56–64. doi: 10.3969/j.issn.1001-5620.2009.06.019

    ZHU Kuanliang, WANG Fuhua, XU Tongtai, et al. Study and application of high temperature drilling fluids (II)[J]. Drilling Fluid & Completion Fluid, 2009, 26(6): 56–64. doi: 10.3969/j.issn.1001-5620.2009.06.019
    [11]
    孙金声,黄贤斌,吕开河,等. 提高水基钻井液高温稳定性的方法、技术现状与研究进展[J]. 中国石油大学学报(自然科学版),2019,43(4):73–81.

    SUN Jinsheng, HUANG Xianbin, LYU Kaihe, et al. Methods, technical progress and research advance of improving high-temperature stability of water based drilling fluids[J]. Journal of China Univer-sity of Petroleum(Edition of Natural Science), 2019, 43(4): 73–81.
    [12]
    张坤,黄平,郑有成,等. 高密度水基钻井液CO2污染防治技术[J]. 天然气技术与经济,2011,5(2):48–50.

    ZHANG Kun, HUANG Ping, ZHENG Youcheng, et al. Prevention of high-density water-base drilling fluid from CO2 pollution[J]. Natural Gas Technology and Economy, 2011, 5(2): 48–50.
    [13]
    陈馥,杨媚,艾加伟,等. 水基钻井液CO2污染的处理[J]. 钻井液与完井液,2016,33(6):58–62. doi: 10.3969/j.issn.1001-5620.2016.06.010

    CHEN Fu, YANG Mei, AI Jiawei, et al. Treatment of CO2 contamination to water base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2016, 33(6): 58–62. doi: 10.3969/j.issn.1001-5620.2016.06.010
    [14]
    宋华,孙群哲,李锋. 油田用磺化聚丙烯酰胺研究进展[J]. 精细石油化工进展,2013,14(4):1–5. doi: 10.3969/j.issn.1009-8348.2013.04.001

    SONG Hua, SUN Qunzhe, LI Feng. Research progress of sulfonated polyacrylamide for oilfield[J]. Advances in Fine Petrochemicals, 2013, 14(4): 1–5. doi: 10.3969/j.issn.1009-8348.2013.04.001
    [15]
    张光华,屈倩倩,朱军峰,等. SAS/MAA/MPEGMAA 聚羧酸盐分散剂的制备与性能[J]. 化工学报,2014,65(8):3290–3297. doi: 10.3969/j.issn.0438-1157.2014.08.060

    ZHANG Guanghua, QU Qianqian, ZHU Junfeng, et al. Synthesis and performance of SAS/MAA/MPEGMAA polycarboxylate dispersants[J]. CIESC Journal, 2014, 65(8): 3290–3297. doi: 10.3969/j.issn.0438-1157.2014.08.060
    [16]
    王维,赵永光,李战伟,等. 南堡3-81井四开钻井液技术[J]. 断块油气田,2015,22(4):514–517.

    WANG Wei, ZHAO Yongguang, LI Zhanwei, et al. Technology of fourth spud drilling fluid in Well Nanpu 3-81[J]. Fault-Block Oil & Gas Field, 2015, 22(4): 514–517.
  • Related Articles

    [1]ZHOU Xiaoyi, XIAO Wulin, WANG Meicheng, KANG Chengman, ZHANG Lei, WANG Zhengliang. Study and Field Test on a High Temperature Plugging Agent for the Thermal Recovery of Heavy Oil in Fengcheng Oilfield, Xinjiang[J]. Petroleum Drilling Techniques, 2021, 49(6): 113-117. DOI: 10.11911/syztjs.2021132
    [2]JIA Zhiwei, CHENG Changkun, ZHU Xiuyu, PU Lantian, HAN Yu, HU Futang. Oil Recovery Enhancement by Composite Flooding Technology for Gasi N1–N21 Ultra-High-Salinity Reservoir in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 81-87. DOI: 10.11911/syztjs.2021121
    [3]YU Fahao, JIANG Zhaoping, BAI Jianhua, LIU Yigang, MENG Xianghai. Determination of the Temperature Resistance Capacity of Sand Control Screen Liner in Horizontal Heavy Oil Wells in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(6): 65-70. DOI: 10.11911/syztjs.2018010
    [4]PENG Zhenhua, ZHANG Yuan, DING Wen, REN Xianghai, LI Xiaojun, XIONG Wei. Artificial Lifting Technology Applied in Ultra-Deep Super-Heavy Oil Reservoirs of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(4): 84-90. DOI: 10.11911/syztjs.2018094
    [5]ZHANG Junlong, WANG Aiyun, HE Xiangxiang. Carbonate Lithology and Microfacies Logging Identification in the Gucheng Area[J]. Petroleum Drilling Techniques, 2016, 44(3): 121-126. DOI: 10.11911/syztjs.201603022
    [6]CUI Chuanzhi, SHENG Qian, JIANG Yidong, YANG Feng, JIA Peifeng. Development and Application of Borehole Insulation Techniques for the Development of Heavy Oil Production in the Dongxin Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(1): 79-84. DOI: 10.11911/syztjs.201601015
    [7]Xu Hui. Solution Characteristics and Oil Displacement Efficiency of an Ultrahigh Molecular Weight Association Polymer[J]. Petroleum Drilling Techniques, 2015, 43(2): 78-83. DOI: 10.11911/syztjs.201502014
    [8]Chen Shaoyun, Li Aihui, Li Ruiying, Wang Chu, Liu Jinwei. Horizontal Well Drilling Technology in Shallow Heavy Oil Recovery in Block Puqian 12 of the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 126-130. DOI: 10.11911/syztjs.201501022
    [9]Xu Hui, Sun Xiuzhi, Han Yugui, He Dongyue, Dong Wen. Performance Evaluation and Microstructure Study of Ultra High Molecular Weight Polymer[J]. Petroleum Drilling Techniques, 2013, 41(3): 114-118. DOI: 10.3969/j.issn.1001-0890.2013.03.022
    [10]Segmented Completion String Running Technology of Shallow Heavy Oil Horizontal Well in Xinjiang Oilfield[J]. Petroleum Drilling Techniques, 2011, 39(4): 44-47. DOI: 10.3969/j.issn.1001-0890.2011.04.009
  • Cited by

    Periodical cited type(3)

    1. 杨开吉,张颖,魏强,程艳,刘全刚. 海上油田开发用抗温抗盐乳液聚合物研制与性能评价. 石油钻探技术. 2024(04): 118-127 . 本站查看
    2. 李硕轩,赵东睿,高红茜,刘誉. 超高分子聚合物驱提高高盐稠油油藏采收率机理及现场应用. 钻采工艺. 2023(01): 132-139 .
    3. 白佳佳,顾添帅,司双虎,陶磊,张娜,史文洋,朱庆杰. 高盐稠油油藏聚合物驱提高采收率研究. 常州大学学报(自然科学版). 2023(05): 60-66 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return