WANG Zenglin, LU Mingjing, ZHANG Liaoyuan, LI Aishan, MENG Yong, ZHENG Bintao. Production System Optimization for Enhanced Fracture Network Stimulation in Continental Shale Oil Reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 71-77. DOI: 10.11911/syztjs.2021074
Citation: WANG Zenglin, LU Mingjing, ZHANG Liaoyuan, LI Aishan, MENG Yong, ZHENG Bintao. Production System Optimization for Enhanced Fracture Network Stimulation in Continental Shale Oil Reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 71-77. DOI: 10.11911/syztjs.2021074

Production System Optimization for Enhanced Fracture Network Stimulation in Continental Shale Oil Reservoirs in the Dongying Sag

More Information
  • Received Date: April 28, 2021
  • Available Online: July 15, 2021
  • The reasonable production system for enhanced fracture network stimulation was studied to maximize the cumulative production in the full period of continental horizontal shale oil wells in the Dongying Sag. According to the complex storage and seepage mechanisms of the shale oil reservoir, a model was established to characterize the full period of fracturing, shut-in and oil production of two-phase flow in the dual media in shale oil reservoir. Production variation with the different production systems (different shut-in time and pressure drop rates in the flowing and pumping stages), and the method for production system optimization were preliminarily discussed by simulation. According to the simulation results, a reasonable production system for target wells was obtained. To be specific, the reasonable shut-in time was 60 days; the pressure drop rate was controlled to be 0.06–0.10 MPa/d at the early flowing stage and 0.02–0.04 MPa/d at the middle flowing stage; tapping was carried out at the last flowing stage to rapidly release the oil pressure to 0; the pressure drop rate was controlled to ensure continuous production of oil wells at the pumping stage, avoiding insufficient liquid supply from the formation matrix due to excessively fast pressure drop. The research results can provide a theoretical guidance for development optimization of continental shale oil in the Dongying Sag, and also provide references for the optimization of production systems for horizontal shale oil wells in other regions.
  • [1]
    SU Yuliang, ZHANG Qi, WANG Wendong. Performance analysis of a composite dual-porosity model in multi-scale fractured shale reservoir[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1107–1118. doi: 10.1016/j.jngse.2015.07.046
    [2]
    苏玉亮,鲁明晶,李萌,等. 页岩油藏多重孔隙介质耦合流动数值模拟[J]. 石油与天然气地质,2019,40(3):645–652. doi: 10.11743/ogg20190319

    SU Yuliang, LU Mingjing, LI Meng, et al. Numerical simulation of shale oil coupled flow in multi-pore media[J]. Oil & Gas Geology, 2019, 40(3): 645–652. doi: 10.11743/ogg20190319
    [3]
    SONG Wenhui, YAO Jun, LI Yang, et al. Apparent gas permeability in an organic-rich shale reservoir[J]. Fuel, 2016, 181: 973–984. doi: 10.1016/j.fuel.2016.05.011
    [4]
    WANG Jing, LIU Huiqing, WANG Lei, et al. Apparent permeability for gas transport in nanopores of organic shale reservoirs including multiple effects[J]. International Journal of Coal Geology, 2015, 152: 50–62.
    [5]
    苏玉亮,盛广龙,王文东,等. 页岩气藏体积压裂有效改造体积计算方法[J]. 地球科学,2017,42(8):1314–1323.

    SU Yuliang, SHENG Guanglong, WANG Wendong, et al. A new approach to calculate effective stimulated reservoir volume in shale gas reservoir[J]. Earth Science, 2017, 42(8): 1314–1323.
    [6]
    崔明月,刘玉章,修乃领,等. 形成复杂缝网体积 (ESRV) 的影响因素分析[J]. 石油钻采工艺,2014,36(2):82–87.

    CUI Mingyue, LIU Yuzhang, XIU Nailing, et al. Analysis of factors affecting the formation of effective stimulated reservoir volume (ESRV)[J]. Oil Drilling & Production Technology, 2014, 36(2): 82–87.
    [7]
    刘华敏,李牧,刘乔平,等. 涪陵页岩气田柱塞气举工艺研究与应用[J]. 石油钻探技术,2020,48(3):102–107. doi: 10.11911/syztjs.2020022

    LIU Huamin, LI Mu, LIU Qiaoping, et al. Research and application of plunger gas lift technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 102–107. doi: 10.11911/syztjs.2020022
    [8]
    赵习森,李立,黄志明,等. 凝析气藏反凝析规律与生产制度关系优化研究[J]. 石油钻探技术,2006,34(6):71–73. doi: 10.3969/j.issn.1001-0890.2006.06.023

    ZHAO Xisen, LI Li, HUANG Zhiming, et al. Optimizing the relationship between condensate properties and production regulations of condensate gas reservoir[J]. Petroleum Drilling Techniques, 2006, 34(6): 71–73. doi: 10.3969/j.issn.1001-0890.2006.06.023
    [9]
    SHENG Guanglong, JAVADPOUR F, SU Yuliang, et al. A semianalytic solution for temporal pressure and production rate in a shale reservoir with nonuniform distribution of induced fractures[J]. SPE Journal, 2019, 24(4): 1856–1883. doi: 10.2118/195576-PA
    [10]
    SHENG Guanglong, SU Yuliang, WANG Wendong, et al. Application of fractal geometry in evaluation of effective stimulated reservoir volume in shale gas reservoirs[J]. Fractals, 2017, 25(4): 1740007.
    [11]
    CAN B, KABIR C S S. Probabilistic production forecasting for unconventional reservoirs with stretched exponential production decline model[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(1): 41–50.
    [12]
    DUONG A N. Rate-decline analysis for fracture-dominated shale reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(3): 377–387.
    [13]
    CHAUDHARY A S, EHLIG-ECONOMIDES C, WATTENBARGER R. Shale oil production performance from a stimulated reservoir volume[R]. SPE 147596, 2011.
    [14]
    邹才能,杨智,朱如凯,等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报,2015,89(6):979–1007. doi: 10.3969/j.issn.0001-5717.2015.06.001

    ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6): 979–1007. doi: 10.3969/j.issn.0001-5717.2015.06.001
    [15]
    陈志明,陈昊枢,廖新维,等. 基于试井分析的新疆吉木萨尔页岩油藏人工缝网参数反演研究[J]. 石油科学通报,2019,4(3):263–272.

    CHEN Zhiming, CHEN Haoshu, LIAO Xinwei, et al. A well-test based study for parameter estimations of artificial fracture networks in the Jimusar shale reservoir in Xinjiang[J]. Petroleum Science Bulletin, 2019, 4(3): 263–272.
    [16]
    许锋,姚约东,吴承美,等. 温度对吉木萨尔致密油藏渗吸效率的影响研究[J]. 石油钻探技术,2020,48(5):100–104. doi: 10.11911/syztjs.2020114

    XU Feng, YAO Yuedong, WU Chengmei, et al. Effect of temperature on the imbibition efficiency of the Jimusar tight oil reservoir[J]. Petroleum Drilling Techniques, 2020, 48(5): 100–104. doi: 10.11911/syztjs.2020114
    [17]
    庞彦明,王永卓,王瑞,等. 松辽盆地古龙页岩油水平井试采分析及产能预测[J]. 大庆石油地质与开发,2020,39(3):137–146.

    PANG Yanming, WANG Yongzhuo, WANG Rui, et al. Production test analysis and productivity prediction of horizontal wells in Gulong shale oil reservoirs, Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 137–146.
    [18]
    董岩,徐东升,钱根葆,等. 吉木萨尔页岩油“甜点”预测方法[J]. 特种油气藏,2020,27(3):54–59. doi: 10.3969/j.issn.1006-6535.2020.03.009

    DONG Yan, XU Dongsheng, QIAN Genbao. Shale oil“sweet-spot”prediction in Jimusar Sag[J]. Specail Oil & Gas Reservoirs, 2020, 27(3): 54–59. doi: 10.3969/j.issn.1006-6535.2020.03.009
    [19]
    付金华,牛小兵,淡卫东,等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探,2019,24(5):601–614. doi: 10.3969/j.issn.1672-7703.2019.05.007

    FU Jinhua, NIU Xiaobing, DAN Weidong, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang 7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601–614. doi: 10.3969/j.issn.1672-7703.2019.05.007
    [20]
    杨灿,王鹏,饶开波,等. 大港油田页岩油水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):34–41. doi: 10.11911/syztjs.2020036

    YANG Can, WANG Peng, RAO Kaibo, et al. Key technologies for drilling horizontal shale oil wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 34–41. doi: 10.11911/syztjs.2020036
    [21]
    赵贤正,周立宏,赵敏,等. 陆相页岩油工业化开发突破与实践:以渤海湾盆地沧东凹陷孔二段为例[J]. 中国石油勘探,2019,24(5):589–600. doi: 10.3969/j.issn.1672-7703.2019.05.006

    ZHAO Xianzheng, ZHOU Lihong, ZHAO Min, et al. Breakthrough and practice of industrial development on continental shale oil: a case study on Kong-2 Member in Cangdong Sag, Bohai Bay Basin[J]. China Petroleum Exploration, 2019, 24(5): 589–600. doi: 10.3969/j.issn.1672-7703.2019.05.006
    [22]
    柳伟荣,倪华峰,王学枫,等. 长庆油田陇东地区页岩油超长水平段水平井钻井技术[J]. 石油钻探技术,2020,48(1):9–14. doi: 10.11911/syztjs.2020029

    LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9–14. doi: 10.11911/syztjs.2020029
    [23]
    石建刚,席传明,熊超,等. 吉木萨尔页岩油藏超长水平井水平段长度界限研究[J]. 特种油气藏,2020,27(4):136–142. doi: 10.3969/j.issn.1006-6535.2020.04.021

    SHI Jiangang, XI Chuanming, XIONG Chao, et al. Lateral length limit of ultra-long horizontal well in Jimsar shale oil reservoir[J]. Special Oil & Gas Reserviors, 2020, 27(4): 136–142. doi: 10.3969/j.issn.1006-6535.2020.04.021
    [24]
    OZKAN S, DUMAN R. Economic evaluation of Marcellus and Utica under the effects of dynamic market and development conditions[R]. SPE 177321, 2015.
    [25]
    ZHANG Z, CLARKSON C, WILLIAMS-KOVACS J D, et al. Rigorous estimation of the initial conditions of flowback using a coupled hydraulic-fracture/dynamic-drainage-area leakoff model constrained by laboratory geomechanical data[J]. SPE Journal, 2020, 25(6): 3051–3078. doi: 10.2118/201095-PA
  • Related Articles

    [1]ZHANG Hui, TAN Shaoxu, HUO Tongda, ZHAO Chenglong, ZHOU Zhankai, PEI Bailin. Integrated Completion Technology of Water and Sand Control in Reservoirs with Extra-High Porosity and Permeability in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2024, 52(1): 107-113. DOI: 10.11911/syztjs.2024015
    [2]YANG Shukun, GUO Hongfeng, HAO Tao, ZHAO Guangyuan, DU Xiaoxia, LI Xiang. Development and Performance Evaluation of an Electrically Controlled Intelligent Water Control and Oil Recovery Tool for Offshore Oilfields[J]. Petroleum Drilling Techniques, 2022, 50(5): 76-81. DOI: 10.11911/syztjs.2022086
    [3]HE Chengjiang, JIANG Yingbing, WEN Huan, LI Xiang. Key Technologies for High-Efficiency One-Well Multi-Control Development of Fractured-Vuggy Reservoirs in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(4): 37-44. DOI: 10.11911/syztjs.2022077
    [4]DI Shiying, CHENG Shiqing, BAI Wenpeng, SHANG Ruyuan, PAN Youjun, SHI Wenyang. Simulation of Transformation from Water-Injection Huff and Puff to Unstable Water-Flooding in Developing Fractured Tight Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 89-96. DOI: 10.11911/syztjs.2021135
    [5]GUO Yi, GAO Xiaofei, YI Huian, DAI Ling, XU Liqian, LIU Jia. Research and Field Test on Life-Long Water Control Completion Technology in Offshore Oilfields[J]. Petroleum Drilling Techniques, 2021, 49(6): 93-98. DOI: 10.11911/syztjs.2021120
    [6]ZHOU Hongyu, WAN Xiaojin, WU Shaowei, ZHANG Bin, KONG Yang. Study on the Sand Control Technique for Gravel Packing with Water Control for Horizontal Wells[J]. Petroleum Drilling Techniques, 2021, 49(1): 101-106. DOI: 10.11911/syztjs.2020138
    [7]GUO Songyi, WANG Zhiming, ZENG Quanshu. An Ordered Clustering Based Segmentation Method for Water Control Completion with AICD in Horizontal Wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 70-75. DOI: 10.11911/syztjs.2020013
    [8]ZHAO Xu, LONG Wu, YAO Zhiliang, PANG Wei. Completion Techniques Involving Gravel-Packing Inflow-Control Screens in Horizontal Wells[J]. Petroleum Drilling Techniques, 2017, 45(4): 65-70. DOI: 10.11911/syztjs.201704011
    [9]ZHAO Chongzhen. Development and Application of an Autonomous Inflow Control Device in Horizontal Wells[J]. Petroleum Drilling Techniques, 2016, 44(3): 95-100. DOI: 10.11911/syztjs.201603017
    [10]Zhao Yizhong, Sun Sangdun, Gao Aihua, Zhi Qingong, Li Peng. Long-Term Sand Control Technology for Multiple Round Steam Huff and Puff Wells in Heavy Oil Reservoirs[J]. Petroleum Drilling Techniques, 2014, 42(3): 90-94. DOI: 10.3969/j.issn.1001-0890.2014.03.017
  • Cited by

    Periodical cited type(15)

    1. 冯永超,李大雷. 泾河油田页岩油储层井壁失稳机理研究. 石油地质与工程. 2024(01): 122-126 .
    2. 汪海阁,常龙,卓鲁斌,席传明,欧阳勇. 中国石油陆相页岩油钻井技术现状与发展建议. 新疆石油天然气. 2024(03): 1-14 .
    3. 余文帅,苏强,孟鐾桥,夏连彬,李亚天,谭天一. 天府气田致密气水平井二开一趟钻钻井关键技术. 天然气勘探与开发. 2024(06): 35-44 .
    4. 秦春,刘纯仁,李玉枝,王治国,陈文可. 苏北断块页岩油水平井钻井提速关键技术. 石油钻探技术. 2024(06): 30-36 . 本站查看
    5. 袁建强. 济阳坳陷页岩油多层立体开发关键工程技术. 石油钻探技术. 2023(01): 1-8 . 本站查看
    6. 赵文庄,李晓黎,周雄兵,杨慧壁,杨赟,刘克强. 陇东页岩油大平台开发钻完井关键技术. 复杂油气藏. 2023(01): 7-12 .
    7. 赵廷峰,叶雨晨,席传明,吴继伟,史玉才. 七段式三维水平井井眼轨道设计方法. 石油钻采工艺. 2023(01): 25-30 .
    8. 孙鑫,刘礼军,侯树刚,戴彩丽,杜焕福,王春伟. 基于页岩油水两相渗流特性的油井产能模拟研究. 石油钻探技术. 2023(05): 167-172 . 本站查看
    9. 迟建功. 大庆古龙页岩油水平井钻井技术. 石油钻探技术. 2023(06): 12-17 . 本站查看
    10. 汪海阁,周波. 致密砂岩气钻完井技术进展及展望. 天然气工业. 2022(01): 159-169 .
    11. 魏志红,刘若冰,魏祥峰,陈斐然,刘珠江,王道军. 四川盆地复兴地区陆相页岩油气勘探评价与认识. 中国石油勘探. 2022(01): 111-119 .
    12. 王国娜,张海军,孙景涛,张巍,曲大孜,郝晨. 大港油田大型井丛场高效钻井技术优化与应用. 石油钻探技术. 2022(02): 51-57 . 本站查看
    13. 苏兴华,詹胜,康芳玲. 面向工程约束的大井丛轨道防碰优化模块设计. 信息系统工程. 2022(05): 72-75 .
    14. 严圣飞. 靖中北小三开型三维水平井快速钻井技术. 化学工程与装备. 2022(09): 137-138 .
    15. 秦春,刘纯仁,陈文可,唐玉华,曹林云. 苏北盆地HY1HF井钻完井关键技术. 复杂油气藏. 2022(03): 17-23 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (578) PDF downloads (111) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return