LIAO Dongliang. Evaluation Methods and Engineering Application of the Feasibility of “Double Sweet Spots”in Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 94-99. DOI: 10.11911/syztjs.2020063
Citation: LIAO Dongliang. Evaluation Methods and Engineering Application of the Feasibility of “Double Sweet Spots”in Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 94-99. DOI: 10.11911/syztjs.2020063

Evaluation Methods and Engineering Application of the Feasibility of “Double Sweet Spots”in Shale Gas Reservoirs

More Information
  • Received Date: November 27, 2019
  • Revised Date: April 08, 2020
  • Available Online: April 26, 2020
  • The determination of“double sweet spots”(the geological and engineering sweet spot) in shale gas reservoirs is an effective method to determine whether it economically worthy of drilling, and the quantitative study of“double sweet spots”is also conducive to the optimization of drilling and fracturing, hence improving the development efficiency of shale gas. In view of the problems of numerous sweet spot parameters and low accuracy of sweet spot evaluation, the main sweet spot parameters were optimized by using the correlation coefficient method, whereby the independent weight coefficient method was adopted to quantitatively characterize both the geological sweet spot and the engineering sweet spot. Taking the strata of Jiaoshiba Block in the Fuling Shale Gas Field as the research object, five primary geological sweet spot parameters and four primary engineering sweet spot parameters were selected. The correlation coefficient of geological sweet spot was 0.89, and that of engineering sweet spot was 0.85. The research results showed that the“double sweet spots”and fracturing ability of shale gas could be used to optimize drilling and fracturing layers, horizontal drilling azimuth and casing engineering safety management. On this basis, the positive role and advantages of horizontal drilling azimuth optimization for casing safety and large volume fracturing as well as determining fracability in shale gas reservoir were analyzed and deemed feasible.

  • [1]
    AMBROSE R J, HARTMAN R C, CAMPOS M D, et al. New pore-scale considerations for shale gas in place calculations[R]. SPE 131772, 2010.
    [2]
    PRISE G J, STEWART D R, BIRD T M, et al. Successful completion operations on ravenspurn north development[R]. SPE 26744, 1993.
    [3]
    潘仁芳, 龚琴, 鄢杰, 等. 页岩气藏“甜点”构成要素及富气特征分析: 以四川盆地长宁地区龙马溪组为例[J]. 天然气工业, 2016, 36(3): 7–13. doi: 10.3787/j.issn.1000-0976.2016.03.002

    PAN Renfang, GONG Qin, YAN Jie, et al. Elements and gas enrichment laws of sweet spots in shale gas reservoir: a case study of the Longmaxi Formation in Changning Block, Sichuan Basin[J]. Natural Gas Industry, 2016, 36(3): 7–13. doi: 10.3787/j.issn.1000-0976.2016.03.002
    [4]
    邹才能, 杨智, 张国生, 等. 常规-非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发, 2014, 41(1): 14–27. doi: 10.11698/PED.2014.01.02

    ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Conventional and unconventional petroleum “orderly accumulation”: concept and practical significance[J]. Petroleum Exploration and Development, 2014, 41(1): 14–27. doi: 10.11698/PED.2014.01.02
    [5]
    CLARKSON C R, WOOD J, BURGIS S E, et al. Nanopore structure analysis and permeability predictions for a tight gas/shale reservoir using low-pressure adsorption and mercury intrusion techniques[R]. SPE 155537, 2012.
    [6]
    BULLER D, HUGHES S N, MARKET J, et al. Petrophysical evaluation for enhancing hydraulic stimulation in horizontal shale gas wells[R]. SPE 132990, 2010.
    [7]
    RICKMAN R, MULLEN M J, PETRE J E, et al. Practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett shale[R]. SPE 115258, 2008.
    [8]
    ROSS D J K, BUSTIN R M. Shale gas potential of the lower jurassic gordondale member, northeastern British Columbia, Canada[J]. Bulletin of Canadian Petroleum Geology, 2007, 55(1): 51–75. doi: 10.2113/gscpgbull.55.1.51
    [9]
    WARPINSKI N R, CLARK J A, SCHMIDT R A, et al. Laboratory investigation on the-effect of in-situ stresses on hydraulic fracture containment[J]. Society of Petroleum Engineers Journal, 1982, 22(3): 333–340. doi: 10.2118/9834-PA
    [10]
    ANDERSON G D. Effects of friction on hydraulic fracture growth near unbonded interfaces in rocks[J]. Society of Petroleum Engineers Journal, 1981, 21(1): 21–29. doi: 10.2118/8347-PA
    [11]
    BLAIR S C, THORPE R K, HEUZE F E, et al. Laboratory observations of the effect of geologic discontinuities on hydrofracture propagation[R]. ARMA-89-0443, 1989.
    [12]
    DANESHY A A. Hydraulic fracture propagation in layered formations[J]. Society of Petroleum Engineers Journal, 1978, 18(1): 33–41. doi: 10.2118/6088-PA
    [13]
    廖东良, 路保平. 页岩气工程甜点评价方法: 以四川盆地焦石坝页岩气田为例[J]. 天然气工业, 2018, 38(2): 43–50. doi: 10.3787/j.issn.1000-0976.2018.02.006

    LIAO Dongliang, LU Baoping. An evaluation method of engineering sweet spots of shale gas reservoir development: a case study from the Jiaoshiba Gas Field, Sichuan Basin[J]. Natural Gas Industry, 2018, 38(2): 43–50. doi: 10.3787/j.issn.1000-0976.2018.02.006
    [14]
    廖东良, 肖立志, 张元春. 基于矿物组分与断裂韧度的页岩地层脆性指数评价模型[J]. 石油钻探技术, 2014, 42(4): 37–41.

    LIAO Dongliang, XIAO Lizhi, ZHANG Yuanchun. Evaluation model for shale brittleness index based on mineral content and fracture toughness[J]. Petroleum Drilling Technigues, 2014, 42(4): 37–41.
    [15]
    廖东良, 曾义金. 利用测井资料建立地层剪破裂模型[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1268–1276.

    LIAO Dongliang, ZENG Yijin. Establishion of formation shear fracture model by logging data[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(4): 1268–1276.
    [16]
    王珍应, 马德坤, 杜坚. 钻头钻进方向预测研究[J]. 石油机械, 1994, 22(6): 19–22, 28.

    WANG Zhenying, MA Dekun, DU Jian. Study on prediction of drilling direction[J]. China Petroleum Machinery, 1994, 22(6): 19–22, 28.
    [17]
    尹虎, 唐志强, 黄晓川. 定向井井壁崩落与钻进方向优化分析[J]. 钻采工艺, 2014, 37(3): 31–33. doi: 10.3969/J.ISSN.1006-768X.2014.03.09

    YIN Hu, TANG Zhiqiang, HUANG Xiaochuan. Analysis of borehole wall spallation and drilling direction optimization of directional well[J]. Drilling & Production Technology, 2014, 37(3): 31–33. doi: 10.3969/J.ISSN.1006-768X.2014.03.09
  • Related Articles

    [1]LUO Di, JIANG Mao, LI Li, XIE Mingying, FENG Shasha, ZHANG Shicheng. A New Geological/Engineering Double Sweet Point Evaluation Method for Horizontal Well Fracturing in Offshore Low Permeability Oilfield: A Case Study of Lufeng Sag in Pearl River Mouth Basin[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025083
    [2]WU Bailie, PENG Chengyong, WU Guang'ai, LOU Yishan, YIN Biao. Effect of Fracability Index on Fracture Propagation: A Case Study of LF Oilfield in South China Sea[J]. Petroleum Drilling Techniques, 2023, 51(3): 105-112. DOI: 10.11911/syztjs.2023062
    [3]WANG Qing, ZHANG Jiawei, SUN Minghao, JI Guodong, WANG Haige, SUN Xiaofeng. The Settlement Drag Coefficient of Gulong Shale Cuttings in Power-Law Fluids in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(2): 54-60. DOI: 10.11911/syztjs.2023006
    [4]YUAN Jianwei, LIU Meijia, LI Chao, WU Chunxin, MA Dong. Research on Boundary Correction Coefficient of Horizontal Wells in Narrow Channel Reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(1): 86-90. DOI: 10.11911/syztjs.2022056
    [5]CHEN Chaofeng, WANG Bo, WANG Jia, XU Yiwen, QIN Yingmin, LI Xuebin. Fracturing Technologies for Horizontal Wells in the Second-Class Shale Oil Reservoirs of the Lower Sweet Spot Areas in Jimusar[J]. Petroleum Drilling Techniques, 2021, 49(4): 112-117. DOI: 10.11911/syztjs.2021089
    [6]ZHOU Jianping, YANG Zhanwei, XU Minjie, WANG Liwei, YAO Maotang, GAO Ying. Research and Field Tests of Weighted Fracturing Fluids with Industrial Calcium Chloride and Guar Gum[J]. Petroleum Drilling Techniques, 2021, 49(2): 96-101. DOI: 10.11911/syztjs.2021014
    [7]XU Xin, WANG Wei, HU Mingyi, LI Hui, FENG Yi. Comparison and Study over the Biot Coefficients Test Methods in Medium Porosity and Medium Permeability Sandstone Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(2): 109-114. DOI: 10.11911/syztjs.2018054
    [8]WANG Hanqing, CHEN Junbin, ZHANG Jie, XIE Qing, WEI Bo, ZHAO Yiran. A New Method of Fracability Evaluation of Shale Gas Reservoir Based on Weight Allocation[J]. Petroleum Drilling Techniques, 2016, 44(3): 88-94. DOI: 10.11911/syztjs.201603016
    [9]Xu Hui, Sun Xiuzhi, Han Yugui, He Dongyue, Dong Wen. Performance Evaluation and Microstructure Study of Ultra High Molecular Weight Polymer[J]. Petroleum Drilling Techniques, 2013, 41(3): 114-118. DOI: 10.3969/j.issn.1001-0890.2013.03.022
    [10]Wang Lin, Lin Yongxue, Yang Xiaohua, Cai Lishan, Chai Long. Effects of Weighting Agent on Ultra-High Density Drilling Fluid’s Performance[J]. Petroleum Drilling Techniques, 2012, 40(3): 48-53. DOI: 10.3969/j.issn.1001-0890.2012.03.010
  • Cited by

    Periodical cited type(25)

    1. 孙豪,刘颖,刘月. 柳城地区鹿寨组页岩最优储层特征识别. 江汉石油职工大学学报. 2025(03): 23-25+29 .
    2. 张卫卫,肖张波,易浩,姜曼,朱焱辉. 致密砂岩储层“双甜点”识别方法在南海东部陆丰地区古近系储层的应用. 石油物探. 2024(01): 217-228 .
    3. 蒋克成,周刚,一刘胜. 页岩气地质工程一体化产能优化研究. 地质论评. 2024(S1): 339-341 .
    4. 熊康,张凤生,谭玉涵. 昭通地区五峰组-龙马溪组页岩气储层分级综合评价. 石油地质与工程. 2024(02): 82-87+92 .
    5. 黄建红,蒋威,谭先锋,吴松涛,蔡鑫勇,伍坤宇,张庆辉. 柴达木盆地西部干柴沟区块下干柴沟组上段页岩油储层特征及勘探潜力. 地质科技通报. 2024(04): 141-153 .
    6. 谭伏霖,孙晓梦,曹健志,郭莉,王亚林. 基于因子分析的页岩油储层“甜点”预测与主控地质因素分析. 非常规油气. 2024(06): 67-74 .
    7. 孙龙德,赵文智,刘合,朱如凯,白斌,康缘,张婧雅,吴松涛. 页岩油“甜点”概念及其应用讨论. 石油学报. 2023(01): 1-13 .
    8. 杨宗楠,孙长彦,范毅刚,许猛堂,孙俊义,余莉珠. 煤系气联合开发甜层评价方法研究. 煤矿安全. 2023(01): 62-69 .
    9. 徐建军,李云杰,杨香艳,杜怡鹤. 合川气田井下节流气井动态分析新方法. 断块油气田. 2023(01): 143-148 .
    10. 葛勋,郭彤楼,黎茂稳,赵培荣,邓虎成,李王鹏,钟城. 深层页岩储层“工程甜点”评价与优选——以川南永川、丁山地区为例. 石油实验地质. 2023(02): 210-221 .
    11. 聂云丽,高国忠. 基于随机森林的页岩气“甜点”分类方法. 油气藏评价与开发. 2023(03): 358-367 .
    12. 汪凯明. 川东南盆缘复杂山地区页岩气井场选址研究. 化工矿产地质. 2023(03): 271-277 .
    13. 冯昕媛,张成娟,谢贵琪,郭得龙,刘永. 柴达木盆地页岩油工程甜点评价技术与应用. 天然气与石油. 2023(05): 63-69 .
    14. 魏浩元,朱宗良,韦德强,李昱东,何恒,杨银平,李赫楠,任雪瑶. 河西走廊及其邻区非常规油气成藏条件及勘探潜力. 石油学报. 2023(12): 2231-2249 .
    15. 吴裕根,门相勇,王永臻. 我国陆相页岩油勘探开发进展、挑战及对策. 中国能源. 2023(04): 18-27 .
    16. 李国欣,朱如凯,张永庶,陈琰,崔景伟,姜营海,伍坤宇,盛军,鲜成钢,刘合. 柴达木盆地英雄岭页岩油地质特征、评价标准及发现意义. 石油勘探与开发. 2022(01): 18-31 .
    17. LI Guoxin,ZHU Rukai,ZHANG Yongshu,CHEN Yan,CUI Jingwei,JIANG Yinghai,WU Kunyu,SHENG Jun,XIAN Chenggang,LIU He. Geological characteristics, evaluation criteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin, NW China. Petroleum Exploration and Development. 2022(01): 21-36 .
    18. 沈骋,范宇,曾波,郭兴午. 渝西区块页岩气储层改造优化对策与适应性分析. 油气地质与采收率. 2022(02): 131-139 .
    19. 马英哲,卫国锋,方圆. 水平井多段水力压裂技术在伊拉克哈勒法耶油田的应用. 中国石油勘探. 2022(05): 138-146 .
    20. 冯江荣,赵圣贤,夏自强,李志宏,刘永旸,何沅翰,高攀,王高翔. 物质点法在页岩储层压裂模拟研究中的应用. 断块油气田. 2022(05): 698-703 .
    21. 李克智. 鄂尔多斯盆地大牛地气田致密砂岩气藏水平井压裂“甜点”识别方法. 大庆石油地质与开发. 2022(06): 124-132 .
    22. 王心竹,陈佳豪,任宗孝. 致密砂岩气井压裂井段甜点定量评价及优选方法. 天然气勘探与开发. 2022(04): 134-140 .
    23. 张锦宏. 中国石化页岩油工程技术现状与发展展望. 石油钻探技术. 2021(04): 8-13 . 本站查看
    24. 王运海,任建华,陈祖华,梅俊伟,胡春锋,王伟,卢比. 常压页岩气田一体化效益开发及智能化评价. 油气藏评价与开发. 2021(04): 487-496 .
    25. 惠钢,陈胜男,王海,顾斐. 基于改进残差的神经网络方法预测页岩气甜点. 西南石油大学学报(自然科学版). 2021(05): 19-32 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (1941) PDF downloads (178) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return