XIE Guanbao, LI Yongjie, WU Haiyan, LI Youyan. Analysis of Sensitive Factors in Dual Laterologs for Cavernous/Karst Formations Near the Borehole[J]. Petroleum Drilling Techniques, 2020, 48(1): 120-126. DOI: 10.11911/syztjs.2019134
Citation: XIE Guanbao, LI Yongjie, WU Haiyan, LI Youyan. Analysis of Sensitive Factors in Dual Laterologs for Cavernous/Karst Formations Near the Borehole[J]. Petroleum Drilling Techniques, 2020, 48(1): 120-126. DOI: 10.11911/syztjs.2019134

Analysis of Sensitive Factors in Dual Laterologs for Cavernous/Karst Formations Near the Borehole

More Information
  • Received Date: May 04, 2019
  • Revised Date: October 21, 2019
  • Available Online: December 19, 2019
  • Igneous and carbonate reservoirs consist of formations characterized by containing extensive fractures, caverns (karst), and fractured karst. The challenges exist in the fact that there is obvious anisotropy and strong heterogeneity, resulting in huge difficulty in logging identification and quantitative evaluation. In order to provide a theoretical basis for the logging identification and evaluation of karst/cavernous formations, the numerical analysis has been used to analyze the effects of hole diameter, drilling fluid resistivity, matrix resistivity, cave size, cave fillings. Further, the distance between cave and borehole is calculated based on the response of dual laterolog using the finite element method. The results showed that the dual laterolog resistivity was significantly reduced due to the existence of near-borehole cave formation. With an increase of cave size, the reduced amplitude of dual laterolog resistivity could be increased as well. The dual laterolog resistivity is the smallest at the center of cave, and as the cave radius increases, both the deep and shallow lateral resistivity decrease. The dual laterolog resistivity increases with the increase of distance between the cave and the well wall, and the increase rate of shallow lateral resistivity is significantly faster than that of deep lateral resistivity. The research results can provide theoretical guidance for the interpretation of dual laterolog data in cavernous/karst formation.

  • [1]
    曾义金. 海相碳酸盐岩超深油气井安全高效钻井关键技术[J]. 石油钻探技术, 2019, 47(3): 25–33. doi: 10.11911/syztjs.2019062

    ZENG Yijin. Key technologies for safe and efficient drilling of marine carbonate ultra-deep oil and gas wells[J]. Petroleum Drilling Techniques, 2019, 47(3): 25–33. doi: 10.11911/syztjs.2019062
    [2]
    谢关宝. 双侧向测井响应特征分析及环境校正方法[J]. 科技导报, 2014, 32(20): 74–78. doi: 10.3981/j.issn.1000-7857.2014.20.012

    XIE Guanbao. Analysis of dual laterolog response characteristics and environmental correction[J]. Science & Technology Review, 2014, 32(20): 74–78. doi: 10.3981/j.issn.1000-7857.2014.20.012
    [3]
    王晓畅,胡松,孔强夫. 双侧向测井响应计算洞穴充填物电阻率方法[J]. 地球物理学进展, 2018, 33(3): 1155–1160. doi: 10.6038/pg2018BB0322

    WANG Xiaochang, HU Song, KONG Qiangfu. Method of cave fillings resistivity calculation by dual laterolog response[J]. Progress in Geophysics, 2018, 33(3): 1155–1160. doi: 10.6038/pg2018BB0322
    [4]
    袁瑞. 塔河油田复杂碎屑岩岩性识别方法[J]. 石油钻探技术, 2014, 42(6): 64–67.

    YUAN Rui. Method to identify complicated lithology of clastic rocks in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(6): 64–67.
    [5]
    范宜仁,王磊,李虎,等. 洞穴型地层双侧向测井响应数值模拟与特征分析[J]. 中国石油大学学报(自然科学版), 2014, 38(6): 40–46.

    FAN Yiren, WANG Lei, LI Hu, et al. Numerical simulation and corresponding characteristic analysis of dual laterolog for cave reservoirs[J]. Journal of China University of Petroleum(Edition of Natural Science), 2014, 38(6): 40–46.
    [6]
    范宜仁,王磊,葛新民,等. 洞穴型地层双侧向测井响应模拟与特征分析[J]. 石油勘探与开发, 2016, 43(2): 237–243.

    FAN Yiren, WANG Lei, GE Xinmin, et al. Response simulation and corresponding analysis of dual laterolog in cavernous reservoirs[J]. Petroleum Exploration and Development, 2016, 43(2): 237–243.
    [7]
    王晓畅,李军,张松扬,等. 裂缝孔隙参数定量表征和刻度及影响因素分析[J]. 地球物理学进展, 2011, 26(4): 1393–1399. doi: 10.3969/j.issn.1004-2903.2011.04.034

    WANG Xiaochang, LI Jun, ZHANG Songyang, et al. Quantitative characterization and calibration of fracture pore parameters and the effect factors analysis[J]. Progress in Geophysics, 2011, 26(4): 1393–1399. doi: 10.3969/j.issn.1004-2903.2011.04.034
    [8]
    刘玺,张珊珊. 过井眼缝洞地层双侧向电阻率测井敏感性因素分析[J]. 长江大学学报(自然科学版), 2018, 15(23): 31–35.

    LIU Xi, ZHANG Shanshan. The analysis on sensitivity of dual lateral resistivity logging for fracture-cavernous formation through the wellbore[J]. Journal of Yangtze University (Natural Science Edition), 2018, 15(23): 31–35.
    [9]
    倪小威,徐观佑,敖旋峰,等. 阵列侧向测井曲线极化角影响因素研究[J]. 石油钻探技术, 2018, 46(2): 120–126.

    NI Xiaowei, XU Guanyou, AO Xuanfeng, et al. The influencing factors on the polarizing angle of array laterolog curves[J]. Petroleum Drilling Techniques, 2018, 46(2): 120–126.
    [10]
    李铭宇,柯式镇,康正明,等. 螺绕环激励式随钻侧向测井仪测量强度影响因素及响应特性[J]. 石油钻探技术, 2018, 46(1): 128–134.

    LI Mingyu, KE Shizhen, KANG Zhengming, et al. Influence factors of measured signal intensity and the response characteristics of the toroidal coil excitation LWD laterolog instrument[J]. Petroleum Drilling Techniques, 2018, 46(1): 128–134.
    [11]
    倪小威,徐思慧,别康,等. 不同井眼偏心距下水平井阵列侧向测井围岩校正研究[J]. 石油钻探技术, 2018, 46(4): 121–126.

    NI Xiaowei, XU Sihui, BIE Kang, et al. Surrounding rock influence correction for array laterolog responses with borehole eccentricities in horizontal wells[J]. Petroleum Drilling Techniques, 2018, 46(4): 121–126.
    [12]
    TAN Maojin, GAO Jie, WANG Xiaochang, et al. Numerical simulation of the dual laterolog for carbonate cave reservoirs and response characteristics[J]. Applied Geophysics, 2011, 8(1): 79–85. doi: 10.1007/s11770-011-0268-2
    [13]
    冯进,倪小威,杨清,等. 基于混合模拟退火算法的阵列侧向测井实时反演研究[J]. 石油钻探技术, 2019, 47(5): 121–126. doi: 10.11911/syztjs.2019107

    FENG Jin, NI Xiaowei, YANG Qing, et al. Research on array lateral logging real-time inversions based on hybrid simulated annealing algorithms[J]. Petroleum Drilling Techniques, 2019, 47(5): 121–126. doi: 10.11911/syztjs.2019107
    [14]
    苏俊磊,张松扬,王晓畅,等. 塔河油田碳酸盐岩洞穴型储层充填性质常规测井表征[J]. 地球物理学进展, 2015, 30(3): 1264–1269. doi: 10.6038/pg20150336

    SU Junlei, ZHANG Songyang, WANG Xiaochang, et al. Conventional logging characterization on fillings characteristic of cavernous carbonate reservoirs in Tahe Oilfield[J]. Progress in Geophysics, 2015, 30(3): 1264–1269. doi: 10.6038/pg20150336
    [15]
    王晓畅,张军,李军,等. 基于交会图决策树的缝洞体类型常规测井识别方法:以塔河油田奥陶系为例[J]. 石油与天然气地质, 2017, 38(4): 805–812. doi: 10.11743/ogg20170417

    WANG Xiaochang, ZHANG Jun, LI Jun, et al. Conventional logging identification of fracture-vug complex types data based on crossplots-decision tree: a case study from the ordovician in Tahe Oilfield, Tarim Basin[J]. Oil & Gas Geology, 2017, 38(4): 805–812. doi: 10.11743/ogg20170417
  • Related Articles

    [1]ZHOU Xiaoyi, XIAO Wulin, WANG Meicheng, KANG Chengman, ZHANG Lei, WANG Zhengliang. Study and Field Test on a High Temperature Plugging Agent for the Thermal Recovery of Heavy Oil in Fengcheng Oilfield, Xinjiang[J]. Petroleum Drilling Techniques, 2021, 49(6): 113-117. DOI: 10.11911/syztjs.2021132
    [2]JIA Zhiwei, CHENG Changkun, ZHU Xiuyu, PU Lantian, HAN Yu, HU Futang. Oil Recovery Enhancement by Composite Flooding Technology for Gasi N1–N21 Ultra-High-Salinity Reservoir in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 81-87. DOI: 10.11911/syztjs.2021121
    [3]YU Fahao, JIANG Zhaoping, BAI Jianhua, LIU Yigang, MENG Xianghai. Determination of the Temperature Resistance Capacity of Sand Control Screen Liner in Horizontal Heavy Oil Wells in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(6): 65-70. DOI: 10.11911/syztjs.2018010
    [4]PENG Zhenhua, ZHANG Yuan, DING Wen, REN Xianghai, LI Xiaojun, XIONG Wei. Artificial Lifting Technology Applied in Ultra-Deep Super-Heavy Oil Reservoirs of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(4): 84-90. DOI: 10.11911/syztjs.2018094
    [5]ZHANG Junlong, WANG Aiyun, HE Xiangxiang. Carbonate Lithology and Microfacies Logging Identification in the Gucheng Area[J]. Petroleum Drilling Techniques, 2016, 44(3): 121-126. DOI: 10.11911/syztjs.201603022
    [6]CUI Chuanzhi, SHENG Qian, JIANG Yidong, YANG Feng, JIA Peifeng. Development and Application of Borehole Insulation Techniques for the Development of Heavy Oil Production in the Dongxin Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(1): 79-84. DOI: 10.11911/syztjs.201601015
    [7]Xu Hui. Solution Characteristics and Oil Displacement Efficiency of an Ultrahigh Molecular Weight Association Polymer[J]. Petroleum Drilling Techniques, 2015, 43(2): 78-83. DOI: 10.11911/syztjs.201502014
    [8]Chen Shaoyun, Li Aihui, Li Ruiying, Wang Chu, Liu Jinwei. Horizontal Well Drilling Technology in Shallow Heavy Oil Recovery in Block Puqian 12 of the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 126-130. DOI: 10.11911/syztjs.201501022
    [9]Xu Hui, Sun Xiuzhi, Han Yugui, He Dongyue, Dong Wen. Performance Evaluation and Microstructure Study of Ultra High Molecular Weight Polymer[J]. Petroleum Drilling Techniques, 2013, 41(3): 114-118. DOI: 10.3969/j.issn.1001-0890.2013.03.022
    [10]Segmented Completion String Running Technology of Shallow Heavy Oil Horizontal Well in Xinjiang Oilfield[J]. Petroleum Drilling Techniques, 2011, 39(4): 44-47. DOI: 10.3969/j.issn.1001-0890.2011.04.009
  • Cited by

    Periodical cited type(3)

    1. 杨开吉,张颖,魏强,程艳,刘全刚. 海上油田开发用抗温抗盐乳液聚合物研制与性能评价. 石油钻探技术. 2024(04): 118-127 . 本站查看
    2. 李硕轩,赵东睿,高红茜,刘誉. 超高分子聚合物驱提高高盐稠油油藏采收率机理及现场应用. 钻采工艺. 2023(01): 132-139 .
    3. 白佳佳,顾添帅,司双虎,陶磊,张娜,史文洋,朱庆杰. 高盐稠油油藏聚合物驱提高采收率研究. 常州大学学报(自然科学版). 2023(05): 60-66 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (1015) PDF downloads (59) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return