JIA Guangliang, SHAO Tong, YIN Xiaoxia, JIANG Shangming, XU Wensi, WANG Yuzhu. Volumetric Fracturing with Mixed Water in Tight Gas Reservoirsin the Hangjinqi Block[J]. Petroleum Drilling Techniques, 2019, 47(2): 87-92. DOI: 10.11911/syztjs.2018143
Citation: JIA Guangliang, SHAO Tong, YIN Xiaoxia, JIANG Shangming, XU Wensi, WANG Yuzhu. Volumetric Fracturing with Mixed Water in Tight Gas Reservoirsin the Hangjinqi Block[J]. Petroleum Drilling Techniques, 2019, 47(2): 87-92. DOI: 10.11911/syztjs.2018143

Volumetric Fracturing with Mixed Water in Tight Gas Reservoirsin the Hangjinqi Block

More Information
  • Received Date: June 11, 2018
  • Revised Date: November 26, 2018
  • Available Online: January 10, 2019
  • The goal of the study was to develop best practices for hydraulic fracturing in the complicated mixed water conditions in the tight gas reservoirs of the Hangjinqi Block. The study was necessary due to challenges such as poor physical properties, limited fracture length to cover reservoir stimulation volume, and low initial post-frac production in the tight gas reservoirs of Hangjinqi Block in the Ordos Basin. In viewing of those challenges and combining with reservoir geological characteristics of the lower Shihezi Formation within the block, key factors affecting volumetric fracturing with mixed water were analyzed, fracturing fluid system selected, and the optimization on the pumping flow rate and operation scale carried out to establish volumetric fracturing technology suitable for the tight gas reservoirs in Hangjinqi Block. In this technology, different types of fluids such as slick water, linear gel and cross-linker for the alternative fracturing are adopted, and forms high-conductive main fractures and complex branched fractures while opening the natural fractures in the reservoir to realize 3D stimulation. This technology has been applied in 5 wells in the block with average open flow capacity 13.2×104m3/d. The research showed that this technology can help in solving the problems of non-sufficient reservoir stimulation volume from limited single fracture length and low post-fracturing production, and it demonstrates a good potential for further development of standard application practices.

  • [1]
    王周红, 王东辉. 东胜气田储层特征研究[J]. 天然气技术与经济, 2014, 8(5): 9–12. doi: 10.3969/j.issn.2095-1132.2014.05.003

    WANG Zhouhong, WANG Donghui. Reservoir characteristics of Dongsheng Gas Field[J]. Natural Gas Technology and Economy, 2014, 8(5): 9–12. doi: 10.3969/j.issn.2095-1132.2014.05.003
    [2]
    郑喜强, 严岗. 鄂尔多斯盆地北部杭锦旗地区油气圈闭类型研究[J]. 勘探地球物理进展, 2006, 29(4): 279–284.

    ZHENG Xiqiang, YAN Gang. Types of hydrocarbon traps in Hangjinqi Area of Northern Ordos Basin[J]. Progress in Exploration Geophysics, 2006, 29(4): 279–284.
    [3]
    吴顺林, 李向平, 王广涛, 等. 鄂尔多斯盆地致密砂岩油藏混合水体积压裂技术[J]. 钻采工艺, 2015, 38(1): 72–75. doi: 10.3969/J.ISSN.1006-768X.2015.01.21

    WU Shunlin, LI Xiangping, WANG Guangtao, et al. Mixed water volume fracturing technology in tight sandstone reservoirs of Ordos Basin[J]. Drilling & Production Technology, 2015, 38(1): 72–75. doi: 10.3969/J.ISSN.1006-768X.2015.01.21
    [4]
    毕曼, 杨映洲, 马占国, 等. 混合压裂在苏里格致密气藏水平井的应用[J]. 断块油气田, 2014, 21(5): 644–647, 659.

    BI Man, YANG Yingzhou, MA Zhanguo, et al. Application of hybrid fracturing in horizontal well of tight gas reservoir in Sulige Gas Field[J]. Fault-Block Oil & Gas Field, 2014, 21(5): 644–647, 659.
    [5]
    陈作, 薛承瑾, 蒋廷学, 等. 页岩气井体积压裂技术在我国的应用建议[J]. 天然气工业, 2010, 30(10): 30–32. doi: 10.3787/j.issn.1000-0976.2010.10.007

    CHEN Zuo, XUE Chengjin, JIANG Tingxue, et al. Proposals for the application of fracturing by stimulated reservoir volume (SRV) in shale gas wells in China[J]. Natural Gas Industry, 2010, 30(10): 30–32. doi: 10.3787/j.issn.1000-0976.2010.10.007
    [6]
    王晓东, 赵振峰, 李向平, 等. 鄂尔多斯盆地致密油层混合水压裂试验[J]. 石油钻采工艺, 2012, 34(5): 80–83. doi: 10.3969/j.issn.1000-7393.2012.05.021

    WANG Xiaodong, ZHAO Zhenfeng, LI Xiangping, et al. Mixing water fracturing technology for tight oil reservoir in Ordos Basin[J]. Oil Drilling & Production Technology, 2012, 34(5): 80–83. doi: 10.3969/j.issn.1000-7393.2012.05.021
    [7]
    翁定为, 雷群, 胥云, 等. 缝网压裂技术及其现场应用[J]. 石油学报, 2011, 30(2): 280–284. doi: 10.3969/j.issn.1001-8719.2011.02.021

    WENG Dingwei, LEI Qun, XU Yun, et al. Network fracture technology and its application in the field[J]. Acta Petrolei Sinica, 2011, 30(2): 280–284. doi: 10.3969/j.issn.1001-8719.2011.02.021
    [8]
    李宪文, 张矿生, 樊凤玲, 等. 鄂尔多斯盆地低压致密油层体积压裂探索研究及试验[J]. 石油天然气学报, 2013, 35(3): 142–146, 152. doi: 10.3969/j.issn.1000-9752.2013.03.032

    LI Xianwen, ZHANG Kuangsheng, FAN Fengling, et al. Study and experiment on volume fracturing of low pressure tight reservoir in Ordos Basin[J]. Journal of Oil and Gas Technology, 2013, 35(3): 142–146, 152. doi: 10.3969/j.issn.1000-9752.2013.03.032
    [9]
    赵金洲, 任岚, 胡永全. 页岩储层压裂缝成网延伸的受控因素分析[J]. 西南石油大学学报(自然科学版), 2013, 35(1): 1–9.

    ZHAO Jinzhou, REN Lan, HU Yongquan. Controlling factors of hydraulic fractures extending into network in shale formations[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(1): 1–9.
    [10]
    郭建春, 尹建, 赵志红. 裂缝干扰下页岩储层压裂形成复杂裂缝可行性[J]. 岩石力学与工程学报, 2014, 33(8): 1589–1596.

    GUO Jianchun, YIN Jian, ZHAO Zhihong. Feasibility of forming complex cracks under crack interference in shale reservoirs fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1589–1596.
    [11]
    崔明月, 刘玉章, 修乃领, 等. 形成复杂缝网体积(ESRV)的影响因素分析[J]. 石油钻采工艺, 2014, 36(2): 82–87.

    CUI Mingyue, LIU Yuzhang, XIU Nailing, et al. Analysis of factors affecting the formation of effective stimulated reservoir volume (ESRV)[J]. Oil Drilling & Production Technology, 2014, 36(2): 82–87.
    [12]
    梁志彬. 杭锦旗锦58井区盒1储层混合水压裂研究与实践[J]. 石油地质与工程, 2017, 31(4): 96–99. doi: 10.3969/j.issn.1673-8217.2017.04.027

    LIANG Zhibin. Mixed water fracturing technology of He 1 reservoir in Jin 58 well block of Hangjinqi and its practice[J]. Petroleum Geology and Engineering, 2017, 31(4): 96–99. doi: 10.3969/j.issn.1673-8217.2017.04.027
    [13]
    杨文波, 常云超, 邱小庆. 东胜气田致密气藏混合水体积压裂技术研究与应用[J]. 石油地质与工程, 2018, 32(3): 101–104. doi: 10.3969/j.issn.1673-8217.2018.03.026

    YANG Wenbo, CHANG Yunchao, QIU Xiaoqing. Research and application of mixed water volume fracturing technology in tight gas reservoir in Dongsheng Gas Field[J]. Petroleum Geology and Engineering, 2018, 32(3): 101–104. doi: 10.3969/j.issn.1673-8217.2018.03.026
    [14]
    逄仁德, 韩继勇, 崔莎莎, 等. 安塞致密油藏混合水体积压裂技术研究与应用[J]. 断块油气田, 2015, 22(4): 530–533.

    PANG Rende, HAN Jiyong, CUI Shasha, et al. Research and application of mixed water volume fracturing technology in tight reservoir, Ansai Oilfield[J]. Fault-Block Oil & Gas Field, 2015, 22(4): 530–533.
    [15]
    赵崇镇. 新场气田须五致密气藏缝网压裂技术[J]. 石油钻探技术, 2015, 43(6): 70–75.

    ZHAO Chongzhen. Network fracturing technology applied to Xu 5 tight gas reservoirs in the Xinchang Gas Field[J]. Petroleum Drilling Techniques, 2015, 43(6): 70–75.
    [16]
    赵崇镇. 深层砂砾岩水平井组立体缝网压裂优化技术[J]. 石油钻探技术, 2014, 42(5): 95–99.

    ZHAO Chongzhen. 3D Fracturing network optimization techniques for horizontal wells in sandstone-conglomerate formations[J]. Petroleum Drilling Techniques, 2014, 42(5): 95–99.
  • Related Articles

    [1]LYU Zhenhu, ZHANG Yupeng, SHI Shanzhi, XI Yue, DONG Jingfeng. Downhole Behavior Characteristics of Horizontal Well Volume Fracturing in High-Speed Erosion Casing[J]. Petroleum Drilling Techniques, 2024, 52(6): 86-96. DOI: 10.11911/syztjs.2024072
    [2]ZHANG Yanjun, GE Hongkui, XU Tianlu, HUANG Wenqiang, ZENG Hui, CHEN Hao. Experimental Study on Silt Distribution Law at the Front end of Fractures in Volume Fracturing[J]. Petroleum Drilling Techniques, 2021, 49(3): 105-110. DOI: 10.11911/syztjs.2021065
    [3]LI Xianwen, LIU Shun, CHEN Qiang, SU Yuliang, SHENG Guanglong. An Evaluation of the Stimulation Effect of Horizontal Well Volumetric Fracturing in Tight Reservoirs with Complex Fracture Networks[J]. Petroleum Drilling Techniques, 2019, 47(6): 73-82. DOI: 10.11911/syztjs.2019126
    [4]CHEN Dong, WANG Nanzhe, YE Zhihui, ZHANG Jialiang. Propped Fracture Conductivity Evolution under a Combination of Compaction and Embedment: Establishing a Model and Analyzing the Influencing Factors[J]. Petroleum Drilling Techniques, 2018, 46(6): 82-89. DOI: 10.11911/syztjs.2018148
    [5]CHEN Lei, YANG Hongqi, XIAO Jingnan, ZHOU Shiming, CHU Yongtao, WEI Zhao. Ultra-Low Density Hollow Microspheres-Nitrogen Foamed Cementing Technology in Block Hangjinqi[J]. Petroleum Drilling Techniques, 2018, 46(3): 34-38. DOI: 10.11911/syztjs.2018049
    [6]SHI Bingzhong, XIE Chao, LI Sheng, LIU Jinhua, CHEN Xiaofei. Development and Application of Drilling Fluid in the Jin-58 Well Block of the Hangjinqi Block[J]. Petroleum Drilling Techniques, 2017, 45(6): 37-41. DOI: 10.11911/syztjs.201706007
    [7]Zhao Chongzhen. Network Fracturing Technology Applied to Xu 5 Tight Gas Reservoirs in the Xinchang Gas Field[J]. Petroleum Drilling Techniques, 2015, 43(6): 70-75. DOI: 10.11911/syztjs.201506013
    [8]Sun Yuanwei, Cheng Yuanfang, Zhang Kuangsheng, Chang Xin, Wang Huaidong. Optimization of Fracture Parameters for Tight Gas Reservoir Considering Non-Darcy Effect[J]. Petroleum Drilling Techniques, 2014, 42(6): 87-91. DOI: 10.11911/syztjs.201406017
    [9]Chang Xinghao. Fracture Propogation in Shallow Tight Reservoirs of Fuxian Block[J]. Petroleum Drilling Techniques, 2013, 41(3): 109-113. DOI: 10.3969/j.issn.1001-0890.2013.03.021
    [10]Cao Yang, Chen Chen, Shi Xuezhi, Xiong Xindong, Qiao Zhiguo. Multi-Stage Fracturing Techniques for Open Hole Horizontal Wells in Western Sichuan Tight Gas Reservoirs[J]. Petroleum Drilling Techniques, 2012, 40(3): 13-17. DOI: 10.3969/j.issn.1001-0890.2012.03.003
  • Cited by

    Periodical cited type(6)

    1. 黄梁帅. 超深强底水断溶体油藏精细注水技术优化. 粘接. 2024(08): 126-129 .
    2. 陈方方,彭得兵,王娜,王张恒,曾其信. 英买2缝洞型油藏注水及注气提高采收率研究. 西南石油大学学报(自然科学版). 2024(04): 149-158 .
    3. 佘治成,陈利新,徐三峰,肖云,张键. 缝洞型碳酸盐岩油藏注氮气提高采收率技术. 西南石油大学学报(自然科学版). 2024(04): 138-148 .
    4. 刘盈,黄雪莉,张宵宁,代真真,李婷婷. 耐温抗盐堵剂研究及其结构性能表征. 应用化工. 2023(12): 3392-3396 .
    5. 葛丽珍,王公昌,张瑞,张烈,张俊廷. 渤海S油田高含水期强水淹层避射原则研究. 石油钻探技术. 2022(03): 106-111 . 本站查看
    6. 郑松青,康志江,程晓军,李小波,张世亮,崔书岳,蒋林. 塔河油田缝洞型碳酸盐岩油藏水驱开发特征及改善对策. 油气地质与采收率. 2022(06): 95-104 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (12327) PDF downloads (81) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return