ZHANG Yanjun, GE Hongkui, XU Tianlu, HUANG Wenqiang, ZENG Hui, CHEN Hao. Experimental Study on Silt Distribution Law at the Front end of Fractures in Volume Fracturing[J]. Petroleum Drilling Techniques, 2021, 49(3): 105-110. DOI: 10.11911/syztjs.2021065
Citation: ZHANG Yanjun, GE Hongkui, XU Tianlu, HUANG Wenqiang, ZENG Hui, CHEN Hao. Experimental Study on Silt Distribution Law at the Front end of Fractures in Volume Fracturing[J]. Petroleum Drilling Techniques, 2021, 49(3): 105-110. DOI: 10.11911/syztjs.2021065

Experimental Study on Silt Distribution Law at the Front end of Fractures in Volume Fracturing

More Information
  • Received Date: September 29, 2020
  • Revised Date: March 20, 2021
  • Available Online: May 11, 2021
  • The role of silt in volume fracturing of tight reservoirs is not yet clear, and so it is with its distribution law at the front end of the fracture. For this reason, a dynamic fluid loss analysis device was used to establish a simulation test method for the distribution of silt sand at the front end of volume fracturing fractures (hereinafter referred as “volume fractures”), and the distribution law and influencing factors of silt were studied on the basis of fracture surface morphology description. It is found by experiments that the sand-carrying fluid was gradually lost in the volume fractures, and the distribution of silt retained at the fracture front end was largely distinct after the fluid loss reached equilibrium. Meanwhile, the pressure in the fractures was gradually elevated and then became stable as the fluid loss continued. The distribution of silt at the front end of fractures can be reasonably characterized by the maximum transport distance and stable pressure. The maximum transport distance increases with widening aperture of the fracture front end, lowering roughness of fracture surfaces, and increasing fracturing fluid viscosity. Small particle size of silt also increases the maximum transport distance. In addition, the stable pressure in the fractures increases as the aperture of fracture front end decreases, the roughness of fracture surfaces increases, the fracturing fluid viscosity increases, and the particle size of silt decreases. The results demonstrate the addition of silt during fracturing can raise the pressure in fractures after plugging their front ends and restrain the fractures from growing too fast in a certain direction, thereby increasing the complexity of the fracture network.
  • [1]
    杜开元, 段国斌, 徐刚, 等.深层页岩气井压裂加砂工艺优化的微地震评价[J].石油地球物理勘探, 2018, 53(增刊2): 148–155.

    DU Kaiyuan, DUAN Guobin, XU Gang, et al. Micro-seismic evaluation of fracturing and sand adding technology optimization in deep shale gas wells[J]. Petroleum Geophysical Explorating, 2018, 53(supplement 2): 148–155.
    [2]
    SHAKEEL M, ABDULRAZZAQ W, ABDULLATIF O, et al. Detailed comparison of processed sand vs. unprocessed sand vs. high-strength proppant for fracturing applications[R]. SPE 194924, 2019.
    [3]
    张国亮,兰中孝,刘鹏. 大庆探区深层火山岩气藏压裂施工控制[J]. 石油勘探与开发,2009,36(4):529–534. doi: 10.3321/j.issn:1000-0747.2009.04.020

    ZHANG Guoliang, LAN Zhongxiao, LIU Peng. Fracturing control method for deep volcanic rock gas reservoirs in Daqing exploration area[J]. Petroleum Exploration and Development, 2009, 36(4): 529–534. doi: 10.3321/j.issn:1000-0747.2009.04.020
    [4]
    KERN L R, PERKINS T K, WYANT R E. The mechanics of sand movement in fracturing[J]. JPT, 1959, 11(7): 55–57. doi: 10.2118/1108-G
    [5]
    SAHAI R, MISKIMINS J L, OLSON K E. Laboratory results of proppant transport in complex fracture systems[R]. SPE 168579, 2014.
    [6]
    KIM J Y, JING Z, MORITA N. Proppant transport studies using three types of fracture slot equipment[R]. ARMA-2019-0273, 2019.
    [7]
    温庆志,杨英涛,王峰,等. 新型通道压裂支撑剂铺置试验[J]. 中国石油大学学报(自然科学版),2016,40(5):112–117.

    WEN Qingzhi, YANG Yingtao, WANG Feng, et al. Experimental study on an innovative proppant placement method for channel fracturing technique[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(5): 112–117.
    [8]
    狄伟. 支撑剂在裂缝中的运移规律及铺置特征[J]. 断块油气田,2019,26(3):355–359.

    DI Wei. Migration law and placement characteristics of proppant in fracture[J]. Fault-Block Oil & Gas Field, 2019, 26(3): 355–359.
    [9]
    潘林华,张烨,王海波,等. 页岩复杂裂缝支撑剂分流机制[J]. 中国石油大学学报(自然科学版),2020,44(1):61–70.

    PAN Linhua, ZHANG Ye, WANG Haibo, et al. Mechanism study on proppants diversion during shale complex fracturing of shale rocks[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(1): 61–70.
    [10]
    张矿生,张同伍,吴顺林,等. 不同粒径组合支撑剂在裂缝中运移规律模拟[J]. 油气藏评价与开发,2019,9(6):72–77. doi: 10.3969/j.issn.2095-1426.2019.06.013

    ZHANG Kuangsheng, ZHANG Tongwu, WU Shunlin, et al. Simulation of proppant transport in fracture with different combinations of particle size[J]. Reservoir Evaluation and Development, 2019, 9(6): 72–77. doi: 10.3969/j.issn.2095-1426.2019.06.013
    [11]
    潘林华,张烨,程礼军,等. 页岩储层体积压裂复杂裂缝支撑剂的运移与展布规律[J]. 天然气工业,2018,38(5):61–70. doi: 10.3787/j.issn.1000-0976.2018.05.007

    PAN Linhua, ZHANG Ye, CHENG Lijun, et al. Migration and distribution of complex fracture proppant in shale reservoir volume fracturing[J]. Natural Gas Industry, 2018, 38(5): 61–70. doi: 10.3787/j.issn.1000-0976.2018.05.007
    [12]
    李栋,牟建业,姚茂堂,等. 裂缝型储层酸压暂堵材料实验研究[J]. 科学技术与工程,2016,16(2):158–164. doi: 10.3969/j.issn.1671-1815.2016.02.031

    LI Dong, MOU Jianye, YAO Maotang, et al. Experimental study of temporary plugging materials to acid fracturing in fractured carbonate reservoir[J]. Science Technology and Engineering, 2016, 16(2): 158–164. doi: 10.3969/j.issn.1671-1815.2016.02.031
    [13]
    徐传奇,李海燕,张小锋,等. 纳米封堵剂性能评价及机理分析[J]. 钻采工艺,2019,42(2):100–103.

    XU Chuanqi, LI Haiyan, ZHANG Xiaofeng, et al. Performance evaluation for new type nano plugging agents and its mechanism analysis[J]. Drilling & Production Technology, 2019, 42(2): 100–103.
    [14]
    李丹,伊向艺,王彦龙,等. 压裂用纳米体膨颗粒裂缝封堵性能实验研究[J]. 钻井液与完井液,2017,34(4):112–116. doi: 10.3969/j.issn.1001-5620.2017.04.021

    LI Dan, YI Xiangyi, WANG Yanlong, et al. Experimental study on fracture plugging performance of volumetric expansion nano particles used in well fracturing[J]. Drilling Fluid & Completion Fluid, 2017, 34(4): 112–116. doi: 10.3969/j.issn.1001-5620.2017.04.021
    [15]
    李志勇,杨超,马攀,等. 高温堵漏凝胶性能评价系统[J]. 钻井液与完井液,2015,32(2):52–54. doi: 10.3969/j.issn.1001-5620.2015.02.013

    LI Zhiyong, YANG Chao, MA Pan, et al. Instrument for high temperature gel LCM evaluation[J]. Drilling Fluid & Completion Fluid, 2015, 32(2): 52–54. doi: 10.3969/j.issn.1001-5620.2015.02.013
    [16]
    VAN OORT E, FRIEDHEIM J E, PIERCE T, et al. Avoiding losses in depleted and weak zones by constantly strengthening well-bores[J]. SPE Drilling & Completion, 2011, 26(4): 519–530.
    [17]
    ZHANG Zhuo, MAO Shaowen, ZHAO Heqian, et al. Simulation of proppant transport in field-scale curved fractures[R]. URTEC-2020-3070-MS, 2020.
    [18]
    GERI M B, IMQAM A, DUNN-NORMAN S. Proppant transport behavior in inclined versus vertical hydraulic fractures: an experimental study[R]. SPE 191813, 2018.
    [19]
    BLYTON C A, GALA D P, SHARMA M M. A study of proppant transport with fluid flow in a hydraulic fracture[J]. SPE Drilling & Completion, 2018, 33(4): 307–323.
    [20]
    李玉梅,吕炜,宋杰,等. 层理性页岩气储层复杂网络裂缝数值模拟研究[J]. 石油钻探技术,2016,44(4):108–113.

    LI Yumei, LYU Wei, SONG Jie, et al. Numerical simulation study on the complex network fractures of stratified shale gas reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(4): 108–113.
  • Cited by

    Periodical cited type(17)

    1. 张润雪,林伯韬. 非均质超稠油疏松砂岩储层可压性评价. 新疆石油天然气. 2023(01): 57-64 .
    2. 孟祥兵,孙新革,罗池辉,马鸿,王青. 强非均质超稠油SAGD储集层升级扩容数值模拟. 新疆石油地质. 2023(02): 210-216 .
    3. 孙林,徐斌,杨军伟,方培林,李晓亮. 水平筛管井不动管柱原位改造技术探索及实践. 石油机械. 2023(08): 85-92 .
    4. 陈欢,于继飞,曹砚锋,杜孝友,闫新江,艾传志. 海上疏松砂岩注水井扩容增注技术研究及应用. 石油科学通报. 2023(05): 649-659 .
    5. 张斌斌,马宇奔,莘怡成,袁征,郭宏峰,夏金娜,谭家文. 岩石扩容技术在海上油田增产增注的研究及应用. 石油化工应用. 2023(11): 72-77 .
    6. 刘丽红,潘朔,徐硕,张雷,崔婕. 稠油采出水的化学混凝除硅技术研究进展. 当代化工. 2023(12): 2963-2966+2972 .
    7. 孙林,徐斌,邹信波,杨军伟,李旭光. 海上油田电泵生产井储层岩石扩容增产实践. 大庆石油地质与开发. 2022(01): 77-83 .
    8. 申婷婷. 浅层超稠油水平井微压裂扩容技术及应用. 特种油气藏. 2022(06): 111-118 .
    9. 白昱,孙森,胡远远,李慧军,陈宝生,周律. 电絮凝法去除SAGD工艺高温采出水中的硅. 化工环保. 2021(02): 156-160 .
    10. 孙君,王小华,徐斌,张丰收. 强非均质超稠油砂储层双水平井扩容启动数值模拟研究. 科学技术与工程. 2021(15): 6262-6271 .
    11. 孙新革,罗池辉,徐斌,杨智,孟祥兵. 强非均质超稠油油藏SAGD储层升级扩容研究. 油气地质与采收率. 2021(06): 38-45 .
    12. 林伯韬,史璨,庄丽,游红娟,黄勇. 基于真三轴实验研究超稠油储集层压裂裂缝扩展规律. 石油勘探与开发. 2020(03): 608-616 .
    13. LIN Botao,SHI Can,ZHUANG Li,YOU Hongjuan,HUANG Yong. Study on fracture propagation behavior in ultra-heavy oil reservoirs based on true triaxial experiments. Petroleum Exploration and Development. 2020(03): 651-660 .
    14. 闫新江,李孟龙,范白涛,于继飞,袁岩光. 渤中油田疏松砂岩注水扩容解堵机理研究. 承德石油高等专科学校学报. 2020(04): 29-34 .
    15. 杨兆臣,于兵,吴永彬,王丽,张家豪,佟娟,姜丹,张崇刚. 超稠油溶剂辅助SAGD启动技术油藏适应性研究. 特种油气藏. 2020(04): 67-72 .
    16. 王倩,高祥录,罗池辉,孟祥兵,甘衫衫,刘佳. 超稠油Ⅲ类油藏夹层发育模式及SAGD提高采收率技术. 特种油气藏. 2020(04): 105-112 .
    17. 赵睿,孙新革,徐斌,罗池辉,孟祥兵. SAGD快速启动技术现状及前景展望. 石油钻采工艺. 2020(04): 417-424 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (517) PDF downloads (103) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return