ZANG Yanbin, ZHANG Jincheng, ZHAO Mingkun, SONG Zheng, LUO Rui. Economic Performance Assessments of Multi-Well Pad Drilling Technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(6): 30-35. DOI: 10.11911/syztjs.201606005
Citation: ZANG Yanbin, ZHANG Jincheng, ZHAO Mingkun, SONG Zheng, LUO Rui. Economic Performance Assessments of Multi-Well Pad Drilling Technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(6): 30-35. DOI: 10.11911/syztjs.201606005

Economic Performance Assessments of Multi-Well Pad Drilling Technology in the Fuling Shale Gas Field

More Information
  • Received Date: February 14, 2016
  • Revised Date: August 25, 2016
  • The number of wells deployed on a specific work mode of one multi-well pad may directly determine economic performance of multi-well pad drilling technology. Currently, there is no model available for assessment of the economic performance of the technology. In this paper, the impact of the "multi-well pad drilling" operations on engineering costs related to pre-drill, drilling, fracturing and other operations were analyzed. In addition, models to assess economic performances of the drilling technology were established with the reduction in overall cost of project as the objective function. Calculations and analyses were also performed by using field data of the shale gas field in the Fuling Area. Research results showed the calculation results coincided well with field data. It was determined that the optimal quantity of wells deployed on each "multi-well pad drilling" platform in Fuling Area was 4-8 wells. For platforms deployed for development of shale gas in deep formations with over 10 wells, the stream-lined "multi-well pad drilling" platform with two rigs of "Model 30+Model 70" should be considered as the optimal work mode. Research results showed the newly proposed techniques for assessing and analyzing economic performances of the "multi-well pad drilling", together with resulting optimal number of wells deployed on such platform and corresponding work modes might provide the necessary guidelines for the overall deployment and design of multi-well pad drilling technology.
  • [1]
    张金成,孙连忠,王甲昌,等."井工厂"技术在我国非常规油气开发中的应用[J].石油钻探技术,2014,42(1):20-25. ZHANG Jincheng,SUN Lianzhong,WANG Jiachang,et al.Application of multi-well pad in unconventional oil and gas development in China[J].Petroleum Drilling Techniques,2014,42(1):20-25.
    [2]
    张金成,艾军,臧艳彬,等.涪陵页岩气田"井工厂"技术[J].石油钻探技术,2016,44(3):9-15. ZHANG Jincheng,AI Jun,ZANG Yanbin,et al.Multi-well pad technology in the Fuling Shale Gas Field[J].Petroleum Drilling Techniques,2016,44(3):9-15.
    [3]
    周贤海,臧艳彬.涪陵地区页岩气山地"井工厂"钻井技术[J].石油钻探技术,2015,43(3):45-49. ZHOU Xianhai,ZANG Yanbin.Application of"well factory"drilling technology in the Fuling Shale Gas Field[J].Petroleum Drilling Techniques,2015,43(3):45-49.
    [4]
    艾军,张金成,臧艳彬,等.涪陵页岩气田钻井关键技术[J].石油钻探技术,2014,42(5):9-15. AI Jun,ZHANG Jincheng,ZANG Yanbin,et al.The key drilling technologies in Fuling Shale Gas Field[J].Petroleum Drilling Techniques,2014,42(5):9-15.
    [5]
    刘乃震.苏53区块"井工厂"技术[J].石油钻探技术,2014,42(5):21-25. LIU Naizhen.Application of factory drilling technology in Block Su 53[J].Petroleum Drilling Techniques,2014,42(5):21-25.
    [6]
    陈平,刘阳,马天寿.页岩气"井工厂"钻井技术现状及展望[J].石油钻探技术,2014,42(3):1-7. CHEN Ping,LIU Yang,MA Tianshou.Status and prospect of multi-well pad drilling technology in shale gas[J].Petroleum Drilling Techniques,2014,42(3):1-7.
    [7]
    OGOKE V,SCHAUERTE L,BOUCHARE G,et al.Simultaneous operations in multi-well pad:a cost effective way of drilling multi wells pad and deliver 8 fracs a day[R].SPE 170744,2014.
    [8]
    KARSAKOV V A.Decision for optimum number of well pads during phase of field development design[R].SPE 171299,2014.
    [9]
    司光,林好宾,丁丹红,等.页岩气水平井工厂化作业造价确定与控制对策[J].天然气工业,2013,33(12):163-167. SI Guang,LIN Haobin,DING Danhong,et al.Cost determination and control of factory-like operations of shale gas horizontal wells[J].Natural Gas Industry,2013,33(12):163-167.
    [10]
    王显光,李雄,林永学.页岩水平井用高性能油基钻井液研究与应用[J].石油钻探技术,2013,41(2):17-22. WANG Xianguang,LI Xiong,LIN Yongxue.Research and application of high performance oil base drilling fluid for shale horizontal wells[J].Petroleum Drilling Techniques,2013,41(2):17-22.
    [11]
    周贤海.涪陵焦石坝区块页岩气水平井钻井完井技术[J].石油钻探技术,2013,41(5):26-30. ZHOU Xianhai.Drilling completion techniques used in shale gas horizontal wells in Jiaoshiba Block of Fuling Area[J].Petroleum Drilling Techniques,2013,41(5):26-30.
    [12]
    周德华,焦方正,贾长贵,等.JY1HF页岩气水平井大型分段压裂技术[J].石油钻探技术,2014,42(1):75-80. ZHOU Dehua,JIAO Fangzheng,JIA Changgui,et al.Large-scale multi-stage hydraulic fracturing technology for shale gas horizontal Well JY1HF[J].Petroleum Drilling Techniques,2014,42(1):75-80.
  • Related Articles

    [1]ZHUO Longcheng, WANG Bo, ZHANG Jinhuan, HU Wendong, ZHANG Luman. Profile Control for Wasted Drilling Fluid Recycling in ZC Oilfield of the Subei Basin[J]. Petroleum Drilling Techniques, 2018, 46(4): 109-114. DOI: 10.11911/syztjs.2018079
    [2]Zhang Ligang, Tao Xin, Yan Tie, Jin Ming, Wang Tao. Horizontal Bedding Shale in-Situ Stress Calculation Inverted from Adjacent Beds[J]. Petroleum Drilling Techniques, 2015, 43(5): 26-30. DOI: 10.11911/syztjs.201505005
    [3]Liu Qiguo, Liu Zhenping, Wang Hongyu, Chen Xing, Cai Rushuai, Qin Ke. A Method to Calculate Gas Well Controlled Reserves and Water Influx from Production Data[J]. Petroleum Drilling Techniques, 2015, 43(1): 96-99. DOI: 10.11911/syztjs.201501016
    [4]Shu Xiaobo, Meng Yingfeng, Wan Liping, Li Gao, Liu Houbin, Zhang Yurui. Recyclable and Highly Inhibitive Stable Foam Drilling Fluid[J]. Petroleum Drilling Techniques, 2014, 42(4): 69-74. DOI: 10.3969/j.issn.1001-0890.2014.04.013
  • Cited by

    Periodical cited type(6)

    1. 邱春阳,王重重,姜春丽,王俊,秦涛,杨倩云. 陕西榆林废弃钻井液固液分离技术研究. 精细石油化工. 2024(02): 48-51 .
    2. 张颖,温钰奇,李辉,庞凯,罗会清. 高含水钻井固废超细颗粒过滤分离实验研究. 应用化工. 2024(02): 293-296 .
    3. 舒小波,陈俊斌,欧翔. 水基钻井液劣质固相控制及其现场应用. 石油地质与工程. 2023(05): 90-93+99 .
    4. 王景. 临兴–神府井区废弃钻井液处理技术. 石油钻探技术. 2022(01): 60-64 . 本站查看
    5. 许毓,刘晓辉,马滢,谢水祥,任雯,张明栋,仝坤. 废水基钻井液中固相颗粒电吸附选择性实验. 石油钻采工艺. 2022(01): 31-36 .
    6. 谭敬鹏,李之军,沈建鑫. 基于电吸附理论的金刚石钻探超细固相清除技术实验研究. 四川地质学报. 2022(S1): 3-6+12 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return