Loading [MathJax]/jax/output/SVG/jax.js

基于SVM的套管最大von Mises应力预测方法

狄勤丰, 吴志浩, 王文昌, 覃光煦, 陈锋

狄勤丰, 吴志浩, 王文昌, 覃光煦, 陈锋. 基于SVM的套管最大von Mises应力预测方法[J]. 石油钻探技术, 2019, 47(3): 62-67. DOI: 10.11911/syztjs.2019065
引用本文: 狄勤丰, 吴志浩, 王文昌, 覃光煦, 陈锋. 基于SVM的套管最大von Mises应力预测方法[J]. 石油钻探技术, 2019, 47(3): 62-67. DOI: 10.11911/syztjs.2019065
DI Qinfeng, WU Zhihao, WANG Wenchang, QIN Guangxu, CHEN Feng. An Prediction Method for Determining the Maximum von Mises Stress in Casing Based on SVM[J]. Petroleum Drilling Techniques, 2019, 47(3): 62-67. DOI: 10.11911/syztjs.2019065
Citation: DI Qinfeng, WU Zhihao, WANG Wenchang, QIN Guangxu, CHEN Feng. An Prediction Method for Determining the Maximum von Mises Stress in Casing Based on SVM[J]. Petroleum Drilling Techniques, 2019, 47(3): 62-67. DOI: 10.11911/syztjs.2019065

基于SVM的套管最大von Mises应力预测方法

基金项目: 国家自然科学基金重点项目“超深井钻柱非线性动力学及动态安全性基础理论研究”(编号:U1663205)、国家自然科学基金青年项目“气体钻井中预弯底部钻具组合控斜的非线性动力学机制”(编号:51704191)和国家自然科学基金青年项目“超深井油套管螺纹接头三维力学特性分析及密封机理研究”(编号:51804194)联合资助
详细信息
    作者简介:

    狄勤丰(1963—),男,江苏溧阳人,1984年毕业于华东石油学院钻井工程专业,1997年获西南石油学院油气井工程专业博士学位,教授,博士生导师,主要从事石油工程中的力学问题研究。系本刊编委。E-mail:qinfengd@sina.com

  • 中图分类号: TE21

An Prediction Method for Determining the Maximum von Mises Stress in Casing Based on SVM

  • 摘要:

    为了预测非均匀地应力条件下不居中套管的最大应力,提高套管安全性,研究了基于支持向量机(SVM)的套管最大von Mises应力预测方法。首先确定了影响套管最大应力的关键因素,包括非均匀地应力、水泥环的弹性模量及泊松比、套管偏心距等8个因素;然后利用ANSYS软件构建了套管应力实验样本;最后建立了εSVR模型,实现了套管最大应力的预测。通过自学习,基于径向基核函数的SVM回归方法对于训练样本达到了很好的精度,5个测试样本的平均相对误差仅为1.32%,具有较好的预测精度,满足工程需求,且可以实现非均匀地应力条件下不居中套管最大应力的快速求解。研究结果为现场安全施工提供了理论依据。

    Abstract:

    In order to predict the maximum stress of uncentered casing under non-uniform in-situ stress and improve the safety of casing, a prediction method of casing’s maximum von Mises stress based on artificial intelligence SVM is studied. First, the key factors affecting the maximum stress of casing are determined, including non-uniform geologic stress, elastic modulus and Poisson's ratio of cement sheath, eccentricity of casing, etc. Then the "experimental" samples of casing stress are constructed by using ANSYS software. Finally the εSVR model is established to realize the prediction of casing’s maximum stress. Through self-learning, the SVM regression method based on RBF kernel achieves good accuracy for training samples. For the five test samples, the average relative error is only 1.32%, which means that this method can meet the needs of engineering application. In particular, this method can be used to quickly solve the maximum stress of uncentered casing under non-uniform in-situ stress.The research results provide theoretical basis for site safety construction.

  • 图  1   线性可分情况下的最优分类线[14]

    Figure  1.   Optimal classification line in the case of linear separability[14]

    图  2   ε–SVR模型的MATLAB程序实现

    Figure  2.   MATLAB program implementation of the ε–SVR Model

    图  3   套管–水泥环–地层系统几何模型

    Figure  3.   Geometry model for casing, cement sheath and formation

    图  4   套管–水泥环–地层系统有限元模型

    Figure  4.   Finite element model for casing, cement sheath and formation

    图  5   套管内壁von Mises应力云图

    Figure  5.   von Mises stress cloud diagram on the casing inner wall

    图  6   预测值和样本值对比结果

    Figure  6.   Comparison of predicted and sample values

    表  1   主要影响因素及取值范围

    Table  1   Main influencing factors and range of values

    影响因素取值范围
    最大水平主应力σH/MPa80~135
    最小水平主应力σh/MPa30~80
    钻井液密度ρf/(kg∙L–11.15~2.05
    水泥环的弹性模量Ec/GPa10~60
    水泥环的泊松比μc0.15~0.35
    地层的弹性模量Es/GPa1~30
    地层的泊松比μs0.10~0.30
    套管偏心距δ/mm1.5~25.7
    下载: 导出CSV

    表  2   SVM“实验样本”数据

    Table  2   Data of the SVM “experimental samples”

    序号ρf/(kg∙L–1Ec/GPaμcEs/GPaμsσH/MPaσh/MPaδ/mmσv/MPa
    11.7335.000.2615.700.2555.00107.5025.7642.24
    21.4838.570.1825.910.2340.71123.211.5766.62
    31.4838.570.1825.910.2340.71123.2111.2768.59
    41.2338.570.1817.740.3137.1480.001.5458.83
    51.4820.710.3225.910.2351.43127.1420.8754.53
    61.4838.570.1825.910.2340.71123.216.3767.72
    71.4820.710.3225.910.2351.43127.1411.2754.29
    82.0542.140.3523.870.1665.71111.431.5487.51
    91.7335.000.269.570.4051.43127.1425.71 008.85
    101.8127.860.177.530.3444.29103.571.5835.23
    911.8924.290.2421.830.1033.5799.6416.0550.76
    921.1556.430.2911.610.1276.43115.3625.7957.12
    931.7335.000.269.570.4051.43127.146.31 006.05
    941.4838.570.1825.910.2340.71123.2116.0769.33
    951.2317.140.1530.000.3665.71111.436.3468.30
    961.7310.000.3021.830.1055.00107.5025.7586.98
    971.4860.000.217.530.3462.14131.0716.01 192.18
    981.4860.000.217.530.3462.14131.0720.81 195.77
    991.4038.570.1813.660.1937.1480.0020.8531.50
    1001.9724.290.245.490.2776.43115.3625.7862.73
    下载: 导出CSV

    表  3   测试样本的预测结果

    Table  3   Predictive effect of test samples

    样本序号模型参数最大von Mises应力/MPa绝对误差/MPa相对误差,%平均相对误差,%
    样本值预测值
    96σ=2.01
    ε=0.01
    C=3.00
    586.98603.2116.232.761.32
    971 192.181 200.548.360.70
    981 195.771 207.7411.971.00
    99531.50530.85–0.65–0.12
    100862.73845.36–17.37–2.01
    下载: 导出CSV
  • [1]

    American Petroleum Institute. API BULLETIN 5C3: bulletin on formulas and calculations of casing, tubing, drill pipe and line pipe properties[S]. 1994-10-01.

    [2]

    HAN J Z, SHI T H. Nonuniform loading affects casing collapse resistance[J]. Oil & Gas Journal, 2001, 99(25): 45–48.

    [3] 李军, 陈勉, 柳贡慧,等. 套管、水泥环及井壁围岩组合体的弹塑性分析[J]. 石油学报, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023

    LI Jun, CHEN Mian, LIU Gonghui, et al. Elastic-plastic analysis of casing-concrete sheath-rock combination[J]. Acta Petrolei Sinica, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023

    [4] 殷有泉,李平恩. 非均匀载荷下套管强度的计算[J]. 石油学报, 2007, 28(6): 138–141. doi: 10.3321/j.issn:0253-2697.2007.06.029

    YIN Youquan, LI Ping’en. Computation of casing strength under non-uniform load[J]. Acta Petrolei Sinica, 2007, 28(6): 138–141. doi: 10.3321/j.issn:0253-2697.2007.06.029

    [5] 李国庆. 套管水泥环组合应力计算边界条件分析[J]. 石油钻探技术, 2012, 40(2): 20–24. doi: 10.3969/j.issn.1001-0890.2012.02.004

    LI Guoqing. Analysis of boundary condition of stress calculation on casing/cement-sheath[J]. Petroleum Drilling Techniques, 2012, 40(2): 20–24. doi: 10.3969/j.issn.1001-0890.2012.02.004

    [6]

    CHEN Zhanfeng, ZHU Weiping, DI Qinfeng. Elasticity solution for the casing under linear crustal stress[J]. Engineering Failure Analysis, 2018, 84: 185–195. doi: 10.1016/j.engfailanal.2017.11.007

    [7] 李子丰,张永贵,阳鑫军. 蠕变地层与油井套管相互作用力学模型[J]. 石油学报, 2009, 30(1): 129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026

    LI Zifeng, ZHANG Yonggui, YANG Xinjun. Mechanics model for interaction between creep formation and oil well casing[J]. Acta Petrolei Sinica, 2009, 30(1): 129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026

    [8] 徐守余,李茂华,牛卫东. 水泥环性质对套管抗挤强度影响的有限元分析[J]. 石油钻探技术, 2007, 35(3): 5–8. doi: 10.3969/j.issn.1001-0890.2007.03.002

    XU Shouyu, LI Maohua, NIU Weidong. Finite element analysis of effect of cement sheath property on casing collapsing strength[J]. Petroleum Drilling Techniques, 2007, 35(3): 5–8. doi: 10.3969/j.issn.1001-0890.2007.03.002

    [9] 李子丰,杨海军,陈飞. 蠕变性地层中套管有效外挤压力的计算方法探讨[J]. 石油钻探技术, 2014, 42(3): 13–15.

    LI Zifeng, YANG Haijun, CHEN Fei. The calculation of the effective external pressure on casing in creep formation[J]. Petroleum Drilling Techniques, 2014, 42(3): 13–15.

    [10]

    RODRIGUEZ W J, FLECKENSTEIN W W, EUSTES A W. Simulation of collapse loads on cemented casing using finite element analysis[R]. SPE 84566, 2003.

    [11]

    PATTILLO P D, LAST N C, ASBILL W T. Effect of nonuniform loading on conventional casing collapse resistance[J]. SPE Drilling & Completion, 2004, 19(3): 156–163.

    [12]

    NABIPOUR A, JOODI B, SARMADIVALEH M. Finite element simulation of downhole stresses in deep gas wells cements[R]. SPE 132156, 2010.

    [13] 窦益华. 粘弹性围岩中套管与井眼不同心时套管围压分析[J]. 石油钻采工艺, 1989, 11(4): 1–6.

    DOU Yihua. Analysis of casing confining pressure when casing and borehole are not concentric in viscoelastic surrounding rock[J]. Oil Driling & Production Technology, 1989, 11(4): 1–6.

    [14]

    CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297.

    [15]

    CHEN Wei, DI Qinfeng, YE Feng, et al. Flowing bottomhole pressure prediction for gas wells based on support vector machine and random samples selection[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18333–18342. doi: 10.1016/j.ijhydene.2017.04.134

    [16] 朱国强,刘士荣,俞金寿. 支持向量机及其在函数逼近中的应用[J]. 华东理工大学学报, 2002, 28(5): 555–559, 568. doi: 10.3969/j.issn.1006-3080.2002.05.023

    ZHU Guoqiang, LIU Shirong, YU Jinshou. Support vector machine and its applications to function approximation[J]. Journal of East China University of Science and Technology, 2002, 28(5): 555–559, 568. doi: 10.3969/j.issn.1006-3080.2002.05.023

    [17] 白鹏, 张喜斌, 张斌, 等.支持向量机理论及其工程应用实例[M].西安: 西安电子科技大学出版社, 2008: 53-56.

    BAI Peng, ZHANG Xibin, ZHANG Bin, et al. Support vector machine and its application in mixed gas infrared spectrum analysis[M]. Xi’an: Xidian University Press, 2008: 5-56.

    [18] 成鹏,汪西莉. SVR参数对非线性函数拟合的影响[J]. 计算机工程, 2011, 37(3): 189–191, 194. doi: 10.3969/j.issn.1000-3428.2011.03.067

    CHENG Peng, WANG Xili. Influence of SVR parameter on non-linear function approximation[J]. Computer Engineering, 2011, 37(3): 189–191, 194. doi: 10.3969/j.issn.1000-3428.2011.03.067

    [19] 王国华,陈正茂,熊继有, 等. 非均匀载荷下套管偏心对套管强度影响研究[J]. 石油天然气学报, 2012, 34(10): 105–107. doi: 10.3969/j.issn.1000-9752.2012.10.025

    WANG Guohua, CHEN Zhengmao, XIONG Jiyou, et al. The effect of casing eccentricity on the casing strength under non-uniformity load[J]. Journal of Oil and Gas Technology, 2012, 34(10): 105–107. doi: 10.3969/j.issn.1000-9752.2012.10.025

    [20] 陈占锋,朱卫平,狄勤丰,等. 非均匀地应力下套管偏心对抗挤强度的影响[J]. 上海大学学报(自然科学版), 2012, 18(1): 83–86.

    CHEN Zhanfeng, ZHU Weiping, DI Qinfeng, et al. Effects of eccentricity of casing on collapse resistance in non-uniform in-situ stresses[J]. Journal of Shanghai University(Natural Science Edition), 2012, 18(1): 83–86.

    [21] 赵德安, 陈志敏, 蔡小林, 等. 中国地应力场分布规律统计分析[J]. 岩石力学与工程学报, 2007, 26(6): 1265–1271. doi: 10.3321/j.issn:1000-6915.2007.06.024

    ZHAO Dean, CHEN Zhiming, CAI Xiaolin, et al. Analysis of distribution rule of geostress in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1265–1271. doi: 10.3321/j.issn:1000-6915.2007.06.024

    [22] 程文瀼.混凝土结构: 上册: 混凝土结构设计原理[M].北京: 中国建筑工业出版社, 2005: 15-17.

    CHENG Wenxiang. Concrete structure: part A: design principle of concrete structure[M]. Beijing: China Architecture & Building Press, 2005: 15-17.

  • 期刊类型引用(14)

    1. 魏建平,蔡玉波,刘勇,余大炀,黄逸,李兴,高梦雅. 非刀具破岩理论与技术研究进展与趋势. 煤炭学报. 2024(02): 801-832 . 百度学术
    2. 白冰,陈勉,金衍. 超临界CO_2渗流的流-固-热多场耦合机理研究. 中国科学:物理学 力学 天文学. 2023(02): 101-113 . 百度学术
    3. 白冰,陈勉,金衍. 超临界CO_2吸附效应对页岩地层井壁稳定影响研究. 岩石力学与工程学报. 2023(S1): 3508-3518 . 百度学术
    4. 黄程,霍丽如,吴辰泓. 基于非常规油气开发的CO_2资源化利用技术进展及前景. 非常规油气. 2022(01): 1-9 . 百度学术
    5. 孙晓,王海柱,李英杰,郑永,陆群. 超临界CO_2水平环空携砂试验研究. 石油钻探技术. 2022(03): 17-23 . 本站查看
    6. 李木坤,王刚,程卫民,浦仕杰,倪红坚,时贤. 超临界二氧化碳射流破岩的热流固耦合机理. 石油勘探与开发. 2021(06): 1258-1268 . 百度学术
    7. 乔兰,郝家旺,李占金,邓乃夫,李庆文. 基于微波加热技术的硬岩破裂方法探究. 煤炭学报. 2021(S1): 241-252 . 百度学术
    8. LI Mukun,WANG Gang,CHENG Weimin,PU Shijie,NI Hongjian,SHI Xian. Heat-fluid-solid coupling mechanism of supercritical carbon dioxide jet in rock-breaking. Petroleum Exploration and Development. 2021(06): 1450-1461 . 必应学术
    9. 杨晓峰,黄彦如,庞勇. 超临界二氧化碳射流火星采样技术研究. 航天器工程. 2020(02): 102-108 . 百度学术
    10. 白鑫,张东明,王艳,王登科,蒋志刚,王小兵. 液态CO_2相变射流压力变化及其煤岩致裂规律. 中国矿业大学学报. 2020(04): 661-670 . 百度学术
    11. 熊钰,莫军,李佩斯,蒋军,张烈辉. 致密气藏储层干化剂在超临界CO_2中的溶解性及增溶研究. 化学研究与应用. 2019(01): 72-78 . 百度学术
    12. 罗攀登,李涵宇,翟立军,李春月,吕欣润,牟建业. 塔河油田超临界CO_2压裂井筒与裂缝温度场. 断块油气田. 2019(02): 225-230 . 百度学术
    13. 王香增,郑永,吴金桥. 超临界CO_2射流特性数值模拟研究. 石油机械. 2019(09): 90-97 . 百度学术
    14. 王毅博,王熙,柳愿. 超临界二氧化碳在非常规油气藏开采中的应用研究. 化工技术与开发. 2018(11): 29-32 . 百度学术

    其他类型引用(9)

图(6)  /  表(3)
计量
  • 文章访问数:  5093
  • HTML全文浏览量:  1226
  • PDF下载量:  66
  • 被引次数: 23
出版历程
  • 收稿日期:  2019-02-27
  • 网络出版日期:  2019-04-29
  • 刊出日期:  2019-04-30

目录

    /

    返回文章
    返回