An Prediction Method for Determining the Maximum von Mises Stress in Casing Based on SVM
-
摘要:
为了预测非均匀地应力条件下不居中套管的最大应力,提高套管安全性,研究了基于支持向量机(SVM)的套管最大von Mises应力预测方法。首先确定了影响套管最大应力的关键因素,包括非均匀地应力、水泥环的弹性模量及泊松比、套管偏心距等8个因素;然后利用ANSYS软件构建了套管应力实验样本;最后建立了
ε−SVR 模型,实现了套管最大应力的预测。通过自学习,基于径向基核函数的SVM回归方法对于训练样本达到了很好的精度,5个测试样本的平均相对误差仅为1.32%,具有较好的预测精度,满足工程需求,且可以实现非均匀地应力条件下不居中套管最大应力的快速求解。研究结果为现场安全施工提供了理论依据。-
关键词:
- 支持向量机 /
- 非均匀地应力 /
- 套管偏心距 /
- von Mises应力
Abstract:In order to predict the maximum stress of uncentered casing under non-uniform in-situ stress and improve the safety of casing, a prediction method of casing’s maximum von Mises stress based on artificial intelligence SVM is studied. First, the key factors affecting the maximum stress of casing are determined, including non-uniform geologic stress, elastic modulus and Poisson's ratio of cement sheath, eccentricity of casing, etc. Then the "experimental" samples of casing stress are constructed by using ANSYS software. Finally the
ε−SVR model is established to realize the prediction of casing’s maximum stress. Through self-learning, the SVM regression method based on RBF kernel achieves good accuracy for training samples. For the five test samples, the average relative error is only 1.32%, which means that this method can meet the needs of engineering application. In particular, this method can be used to quickly solve the maximum stress of uncentered casing under non-uniform in-situ stress.The research results provide theoretical basis for site safety construction. -
-
表 1 主要影响因素及取值范围
Table 1 Main influencing factors and range of values
影响因素 取值范围 最大水平主应力σH/MPa 80~135 最小水平主应力σh/MPa 30~80 钻井液密度ρf/(kg∙L–1) 1.15~2.05 水泥环的弹性模量Ec/GPa 10~60 水泥环的泊松比μc 0.15~0.35 地层的弹性模量Es/GPa 1~30 地层的泊松比μs 0.10~0.30 套管偏心距δ/mm 1.5~25.7 表 2 SVM“实验样本”数据
Table 2 Data of the SVM “experimental samples”
序号 ρf/(kg∙L–1) Ec/GPa μc Es/GPa μs σH/MPa σh/MPa δ/mm σv/MPa 1 1.73 35.00 0.26 15.70 0.25 55.00 107.50 25.7 642.24 2 1.48 38.57 0.18 25.91 0.23 40.71 123.21 1.5 766.62 3 1.48 38.57 0.18 25.91 0.23 40.71 123.21 11.2 768.59 4 1.23 38.57 0.18 17.74 0.31 37.14 80.00 1.5 458.83 5 1.48 20.71 0.32 25.91 0.23 51.43 127.14 20.8 754.53 6 1.48 38.57 0.18 25.91 0.23 40.71 123.21 6.3 767.72 7 1.48 20.71 0.32 25.91 0.23 51.43 127.14 11.2 754.29 8 2.05 42.14 0.35 23.87 0.16 65.71 111.43 1.5 487.51 9 1.73 35.00 0.26 9.57 0.40 51.43 127.14 25.7 1 008.85 10 1.81 27.86 0.17 7.53 0.34 44.29 103.57 1.5 835.23 … … … … … … … … … … 91 1.89 24.29 0.24 21.83 0.10 33.57 99.64 16.0 550.76 92 1.15 56.43 0.29 11.61 0.12 76.43 115.36 25.7 957.12 93 1.73 35.00 0.26 9.57 0.40 51.43 127.14 6.3 1 006.05 94 1.48 38.57 0.18 25.91 0.23 40.71 123.21 16.0 769.33 95 1.23 17.14 0.15 30.00 0.36 65.71 111.43 6.3 468.30 96 1.73 10.00 0.30 21.83 0.10 55.00 107.50 25.7 586.98 97 1.48 60.00 0.21 7.53 0.34 62.14 131.07 16.0 1 192.18 98 1.48 60.00 0.21 7.53 0.34 62.14 131.07 20.8 1 195.77 99 1.40 38.57 0.18 13.66 0.19 37.14 80.00 20.8 531.50 100 1.97 24.29 0.24 5.49 0.27 76.43 115.36 25.7 862.73 表 3 测试样本的预测结果
Table 3 Predictive effect of test samples
样本序号 模型参数 最大von Mises应力/MPa 绝对误差/MPa 相对误差,% 平均相对误差,% 样本值 预测值 96 σ=2.01
ε=0.01
C=3.00586.98 603.21 16.23 2.76 1.32 97 1 192.18 1 200.54 8.36 0.70 98 1 195.77 1 207.74 11.97 1.00 99 531.50 530.85 –0.65 –0.12 100 862.73 845.36 –17.37 –2.01 -
[1] American Petroleum Institute. API BULLETIN 5C3: bulletin on formulas and calculations of casing, tubing, drill pipe and line pipe properties[S]. 1994-10-01.
[2] HAN J Z, SHI T H. Nonuniform loading affects casing collapse resistance[J]. Oil & Gas Journal, 2001, 99(25): 45–48.
[3] 李军, 陈勉, 柳贡慧,等. 套管、水泥环及井壁围岩组合体的弹塑性分析[J]. 石油学报, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023 LI Jun, CHEN Mian, LIU Gonghui, et al. Elastic-plastic analysis of casing-concrete sheath-rock combination[J]. Acta Petrolei Sinica, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023
[4] 殷有泉,李平恩. 非均匀载荷下套管强度的计算[J]. 石油学报, 2007, 28(6): 138–141. doi: 10.3321/j.issn:0253-2697.2007.06.029 YIN Youquan, LI Ping’en. Computation of casing strength under non-uniform load[J]. Acta Petrolei Sinica, 2007, 28(6): 138–141. doi: 10.3321/j.issn:0253-2697.2007.06.029
[5] 李国庆. 套管水泥环组合应力计算边界条件分析[J]. 石油钻探技术, 2012, 40(2): 20–24. doi: 10.3969/j.issn.1001-0890.2012.02.004 LI Guoqing. Analysis of boundary condition of stress calculation on casing/cement-sheath[J]. Petroleum Drilling Techniques, 2012, 40(2): 20–24. doi: 10.3969/j.issn.1001-0890.2012.02.004
[6] CHEN Zhanfeng, ZHU Weiping, DI Qinfeng. Elasticity solution for the casing under linear crustal stress[J]. Engineering Failure Analysis, 2018, 84: 185–195. doi: 10.1016/j.engfailanal.2017.11.007
[7] 李子丰,张永贵,阳鑫军. 蠕变地层与油井套管相互作用力学模型[J]. 石油学报, 2009, 30(1): 129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026 LI Zifeng, ZHANG Yonggui, YANG Xinjun. Mechanics model for interaction between creep formation and oil well casing[J]. Acta Petrolei Sinica, 2009, 30(1): 129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026
[8] 徐守余,李茂华,牛卫东. 水泥环性质对套管抗挤强度影响的有限元分析[J]. 石油钻探技术, 2007, 35(3): 5–8. doi: 10.3969/j.issn.1001-0890.2007.03.002 XU Shouyu, LI Maohua, NIU Weidong. Finite element analysis of effect of cement sheath property on casing collapsing strength[J]. Petroleum Drilling Techniques, 2007, 35(3): 5–8. doi: 10.3969/j.issn.1001-0890.2007.03.002
[9] 李子丰,杨海军,陈飞. 蠕变性地层中套管有效外挤压力的计算方法探讨[J]. 石油钻探技术, 2014, 42(3): 13–15. LI Zifeng, YANG Haijun, CHEN Fei. The calculation of the effective external pressure on casing in creep formation[J]. Petroleum Drilling Techniques, 2014, 42(3): 13–15.
[10] RODRIGUEZ W J, FLECKENSTEIN W W, EUSTES A W. Simulation of collapse loads on cemented casing using finite element analysis[R]. SPE 84566, 2003.
[11] PATTILLO P D, LAST N C, ASBILL W T. Effect of nonuniform loading on conventional casing collapse resistance[J]. SPE Drilling & Completion, 2004, 19(3): 156–163.
[12] NABIPOUR A, JOODI B, SARMADIVALEH M. Finite element simulation of downhole stresses in deep gas wells cements[R]. SPE 132156, 2010.
[13] 窦益华. 粘弹性围岩中套管与井眼不同心时套管围压分析[J]. 石油钻采工艺, 1989, 11(4): 1–6. DOU Yihua. Analysis of casing confining pressure when casing and borehole are not concentric in viscoelastic surrounding rock[J]. Oil Driling & Production Technology, 1989, 11(4): 1–6.
[14] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297.
[15] CHEN Wei, DI Qinfeng, YE Feng, et al. Flowing bottomhole pressure prediction for gas wells based on support vector machine and random samples selection[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18333–18342. doi: 10.1016/j.ijhydene.2017.04.134
[16] 朱国强,刘士荣,俞金寿. 支持向量机及其在函数逼近中的应用[J]. 华东理工大学学报, 2002, 28(5): 555–559, 568. doi: 10.3969/j.issn.1006-3080.2002.05.023 ZHU Guoqiang, LIU Shirong, YU Jinshou. Support vector machine and its applications to function approximation[J]. Journal of East China University of Science and Technology, 2002, 28(5): 555–559, 568. doi: 10.3969/j.issn.1006-3080.2002.05.023
[17] 白鹏, 张喜斌, 张斌, 等.支持向量机理论及其工程应用实例[M].西安: 西安电子科技大学出版社, 2008: 53-56. BAI Peng, ZHANG Xibin, ZHANG Bin, et al. Support vector machine and its application in mixed gas infrared spectrum analysis[M]. Xi’an: Xidian University Press, 2008: 5-56.
[18] 成鹏,汪西莉. SVR参数对非线性函数拟合的影响[J]. 计算机工程, 2011, 37(3): 189–191, 194. doi: 10.3969/j.issn.1000-3428.2011.03.067 CHENG Peng, WANG Xili. Influence of SVR parameter on non-linear function approximation[J]. Computer Engineering, 2011, 37(3): 189–191, 194. doi: 10.3969/j.issn.1000-3428.2011.03.067
[19] 王国华,陈正茂,熊继有, 等. 非均匀载荷下套管偏心对套管强度影响研究[J]. 石油天然气学报, 2012, 34(10): 105–107. doi: 10.3969/j.issn.1000-9752.2012.10.025 WANG Guohua, CHEN Zhengmao, XIONG Jiyou, et al. The effect of casing eccentricity on the casing strength under non-uniformity load[J]. Journal of Oil and Gas Technology, 2012, 34(10): 105–107. doi: 10.3969/j.issn.1000-9752.2012.10.025
[20] 陈占锋,朱卫平,狄勤丰,等. 非均匀地应力下套管偏心对抗挤强度的影响[J]. 上海大学学报(自然科学版), 2012, 18(1): 83–86. CHEN Zhanfeng, ZHU Weiping, DI Qinfeng, et al. Effects of eccentricity of casing on collapse resistance in non-uniform in-situ stresses[J]. Journal of Shanghai University(Natural Science Edition), 2012, 18(1): 83–86.
[21] 赵德安, 陈志敏, 蔡小林, 等. 中国地应力场分布规律统计分析[J]. 岩石力学与工程学报, 2007, 26(6): 1265–1271. doi: 10.3321/j.issn:1000-6915.2007.06.024 ZHAO Dean, CHEN Zhiming, CAI Xiaolin, et al. Analysis of distribution rule of geostress in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1265–1271. doi: 10.3321/j.issn:1000-6915.2007.06.024
[22] 程文瀼.混凝土结构: 上册: 混凝土结构设计原理[M].北京: 中国建筑工业出版社, 2005: 15-17. CHENG Wenxiang. Concrete structure: part A: design principle of concrete structure[M]. Beijing: China Architecture & Building Press, 2005: 15-17.
-
期刊类型引用(14)
1. 魏建平,蔡玉波,刘勇,余大炀,黄逸,李兴,高梦雅. 非刀具破岩理论与技术研究进展与趋势. 煤炭学报. 2024(02): 801-832 . 百度学术
2. 白冰,陈勉,金衍. 超临界CO_2渗流的流-固-热多场耦合机理研究. 中国科学:物理学 力学 天文学. 2023(02): 101-113 . 百度学术
3. 白冰,陈勉,金衍. 超临界CO_2吸附效应对页岩地层井壁稳定影响研究. 岩石力学与工程学报. 2023(S1): 3508-3518 . 百度学术
4. 黄程,霍丽如,吴辰泓. 基于非常规油气开发的CO_2资源化利用技术进展及前景. 非常规油气. 2022(01): 1-9 . 百度学术
5. 孙晓,王海柱,李英杰,郑永,陆群. 超临界CO_2水平环空携砂试验研究. 石油钻探技术. 2022(03): 17-23 . 本站查看
6. 李木坤,王刚,程卫民,浦仕杰,倪红坚,时贤. 超临界二氧化碳射流破岩的热流固耦合机理. 石油勘探与开发. 2021(06): 1258-1268 . 百度学术
7. 乔兰,郝家旺,李占金,邓乃夫,李庆文. 基于微波加热技术的硬岩破裂方法探究. 煤炭学报. 2021(S1): 241-252 . 百度学术
8. LI Mukun,WANG Gang,CHENG Weimin,PU Shijie,NI Hongjian,SHI Xian. Heat-fluid-solid coupling mechanism of supercritical carbon dioxide jet in rock-breaking. Petroleum Exploration and Development. 2021(06): 1450-1461 . 必应学术
9. 杨晓峰,黄彦如,庞勇. 超临界二氧化碳射流火星采样技术研究. 航天器工程. 2020(02): 102-108 . 百度学术
10. 白鑫,张东明,王艳,王登科,蒋志刚,王小兵. 液态CO_2相变射流压力变化及其煤岩致裂规律. 中国矿业大学学报. 2020(04): 661-670 . 百度学术
11. 熊钰,莫军,李佩斯,蒋军,张烈辉. 致密气藏储层干化剂在超临界CO_2中的溶解性及增溶研究. 化学研究与应用. 2019(01): 72-78 . 百度学术
12. 罗攀登,李涵宇,翟立军,李春月,吕欣润,牟建业. 塔河油田超临界CO_2压裂井筒与裂缝温度场. 断块油气田. 2019(02): 225-230 . 百度学术
13. 王香增,郑永,吴金桥. 超临界CO_2射流特性数值模拟研究. 石油机械. 2019(09): 90-97 . 百度学术
14. 王毅博,王熙,柳愿. 超临界二氧化碳在非常规油气藏开采中的应用研究. 化工技术与开发. 2018(11): 29-32 . 百度学术
其他类型引用(9)