Processing math: 16%

智能录井技术研究进展及发展展望

王志战

王志战. 智能录井技术研究进展及发展展望[J]. 石油钻探技术,2024,52(5):51−61. DOI: 10.11911/syztjs.2024099
引用本文: 王志战. 智能录井技术研究进展及发展展望[J]. 石油钻探技术,2024,52(5):51−61. DOI: 10.11911/syztjs.2024099
WANG Zhizhan. Research progress and development prospect of intelligent surface logging technology [J]. Petroleum Drilling Techniques, 2024, 52(5):51−61. DOI: 10.11911/syztjs.2024099
Citation: WANG Zhizhan. Research progress and development prospect of intelligent surface logging technology [J]. Petroleum Drilling Techniques, 2024, 52(5):51−61. DOI: 10.11911/syztjs.2024099

智能录井技术研究进展及发展展望

基金项目: 中国石化科技攻关项目“岩屑自动化录井及多元信息在线检测技术研究”(编号:P23158)资助。
详细信息
    作者简介:

    王志战(1969—),男,山东栖霞人,1991年毕业于西北大学岩石矿物学及地球化学专业,2002年获石油大学计算机应用技术专业硕士学位,2006年获西北大学矿产普查与勘探专业博士学位,正高级工程师,长期从事录井基础理论与新技术新方法研究。系本刊编委。E-mail:wangzz.sripe@sinopec.com

  • 中图分类号: P631.81

Research Progress and Development Prospect of Intelligent Surface Logging Technology

  • 摘要:

    录井具有样品条件及制样工序复杂、采集项目多而离散、人工经验依赖性强且人均产值低等特点,亟需加强智能化转型,但相比于其他石油工程技术,智能录井技术进展缓慢,且局限于应用层面。为此,从智能钻井的进展与成效入手,分析了国内外智能钻井在硬件系统、控制系统、应用系统方面的进展与差距;然后,从地质录井、工程录井、智慧平台3个方面分析了智能录井的主要技术进展,包括“数据+”驱动和视觉驱动的岩性识别、流体识别、井下与地面风险识别及预警等。通过对比智能钻井与智能录井的现状,提出智能录井应强化井下智能录井、智能录井机器人等硬件系统及多场数字孪生、多元采集智能控制、多模态录井大模型、智能解释评价等软件系统的研发。同时强调,既要高度重视,又要理性看待智能录井的发展,要在回顾评价、横向对比的基础上,做好战略定位与研发流程优化,实现进度追赶与作用发挥。这些分析与观点,对推动智能录井实现良性、快速发展具有指导意义。

    Abstract:

    Surface logging has the characteristics of complex sample conditions and sample preparation process, numerous and discrete collection items, strong dependence on hands-on experience, and low per capita output. It is urgent to strengthen intelligentialization transformation. However, compared with other petroleum engineering technologies, intelligent surface logging is making slow advancement and facing application limits. Therefore, the progress and gap of hardware systems, control systems, and application systems of intelligent drilling in China and abroad were analyzed from the progress and achievement of intelligent drilling. Then, the main technical progress of intelligent surface logging was analyzed in terms of geological surface logging, engineering surface logging, and intelligent platform, covering “data +” driven and visually driven lithology identification, fluid identification, and downhole and surface risk identification and early alarming. Based on the comparison between intelligent drilling and intelligent surface logging, it was suggested that the research and development of hardware systems such as downhole intelligent surface logging, and intelligent surface logging robots, as well as software systems such as multi-field digital twins, multi-acquisition intelligent control, multimode large model of surface logging, and intelligent interpretation and evaluation should be strengthened. At the same time, it was emphasized that we should attach great importance to and rationally look at the development of intelligent surface logging and determine strategic positioning and process optimization on the basis of retrospective evaluation and horizontal comparison, so as to catch up with the progress and engagement. These analyses and viewpoints have guiding significance in promoting the benign and rapid development of intelligent surface logging.

  • 近年来,我国油气钻探发展迅速,钻井过程中遇到的地层情况也越发复杂,常规平面齿钻头钻速慢、抗冲性差和使用寿命短等问题逐渐突出[1]。为提高钻头的破岩能力、延长其使用寿命,提高钻井效率,降低钻井成本,研制了多种非平面PDC切削齿[25],包括Stinger圆锥齿[6-8]、屋脊齿[9]等,可以提高PDC钻头的力学性能及其在特定地层的机械钻速。

    2017年,国内研制了三棱形PDC切削齿(简称三棱齿)[10],其耐磨性能比常规的平面PDC齿提高58.6%,抗疲劳冲击性能提高95.7%,磨削载荷平均降低41.9%,其力学性能远远优于平面PDC切削齿。但三棱齿的金刚石工作表面具有特有的脊形结构,使其破岩机理和适用地层与常规平面齿有所不同[11]。对三棱齿破岩机理认识不清楚,导致钻头设计方案不合理,不但影响钻进效果,还会造成切削齿磨损过快、折断和金刚石脱落等问题,导致钻井成本升高。为此,笔者采用数值模拟方法分析三棱齿破岩时的岩石应力和洛德角,并在室内试验进行单齿切削试验,探究三棱齿破岩时的各向切削力变化规律,结合现场试验对非平面三棱齿的实际应用效果进行分析和研究,探索其破岩机理和破岩特点,为非平面齿钻头设计提供理论依据。

    三棱齿的三视图见图1,其中脊背长度L=3.0 mm,脊背倾角γ=3,脊背夹角ψ = 156,直径D=15.88 mm,高度H=13.0 mm,齿边缘倒角C=0.4 mm,三棱齿的脊背处倒角均设置为1.0 mm。在此基础上,采用有限元软件,建立PDC切削齿破岩过程的有限元模型。选取武胜砂岩的力学性质参数作为岩石本构材料参数,密度为2.54 g/cm3,弹性模量为11.54 GPa,泊松比为0.062 MPa,抗拉强度为4.346 MPa,抗剪强度为13.56 MPa,抗压强度为67.548 MPa,内摩擦角38.03°,并根据圣维南原理,设定岩石模型尺寸为170 mm×50 mm×25 mm,岩石四周及底面边界自由度设置为0;三棱齿金刚石材料密度为15.4 g/cm3,弹性模量为890 GPa,泊松比为0.077[12]

    图  1  三棱齿三视图
    Figure  1.  Three-view drawing of a triangular prismatic cutter

    三棱齿网格划分采用六面体网格,并使用减缩积分方法,结果如图2所示。岩石本构关系选用D-P准则,并定义了硬化特征;选用shear damage破坏准则,并设置损伤演化系数。将PDC切削齿绕钻头轴线的旋转切削简化为直线切削运动。为了计算方便快捷,切削齿视为刚体,忽略钻井液及温度的影响。

    图  2  三棱齿切削破岩有限元模型
    Figure  2.  Finite element model of rock cutting by a triangular prismatic cutter

    相同切削参数下,隐去切削齿后,常规平面齿与三棱齿切削岩石时岩石应力状态如图3图4所示。数值模拟结果表明,非平面PDC齿与常规平面齿破岩过程存在明显差别。常规平面齿切削岩石时,在切削齿边沿处存在较大的应力集中区域,说明其主要利用金刚石齿刃边沿接触岩石产生的应力集中破碎岩石;而三棱齿破碎岩石时,产生的应力集中区域主要分布于棱脊区域,即岩石与三棱齿脊背接触部分,说明三棱齿主要通过金刚石的脊形结构接触岩石产生较大的点载荷,产生小范围破碎吃入岩石。

    图  3  常规平面齿中岩石Mises应力云图
    Figure  3.  Cloud map of Mises stress on rocks cut by a conventional planar cutter
    图  4  三棱齿中岩石Mises应力云图
    Figure  4.  Cloud map of Mises stress on rocks cut by a triangular prismatic cutter

    为了更准确和直观地比较三棱齿与常规平面齿破岩机理的差异,从数值模拟结果中提取切削瞬时岩石网格的三向主应力,得到各个网格的受力状态。岩石单元的应力提取位置如图5所示,以切削齿工作面前即将发生等效塑性应变岩石网格为第一排,间隔提取3排岩石网格的主应力数值。图5中1、2号网格为切削齿工作面上靠近切削齿中心处岩石,5、6号网格为靠近切削齿齿刃处岩石。

    图  5  岩石单元的应力提取位置示意
    Figure  5.  Stress extraction location of rock element

    通过提取得到的主应力数据,计算得出每处网格洛德角θσ大小。岩石力学中的洛德角,可以反映岩石的受力状态形式,即3个主应力分量之间的比例关系,因此通过计算每个岩石网格的洛德角,能够得到切削齿切削破碎岩石时切削齿工作面前端区域的岩石受力状态,进而分析三棱齿与常规平面齿破岩时的差异。

    根据岩土弹塑性力学,洛德角的计算公式为[13]

    tanθσ=132σ2σ1σ3σ1σ330 (1)

    式中: {\theta }_{\sigma } 为洛德角,(°); {\sigma _1} {\sigma _2} {\sigma _3} 分别为第一主应力、第二主应力和第三主应力,MPa。

    {\theta _\sigma } = - 30^\circ 时,表示岩石单纯受拉; {\theta _\sigma } = 0^\circ 时,表示岩石单纯受剪; {\theta _\sigma } = 30^\circ 时,表示岩石单纯受压; - 30^\circ \leqslant {\theta _\sigma } \leqslant 0^\circ 时,表示岩石为拉伸剪切受力状态; 0^\circ \leqslant {\theta _\sigma } \leqslant 30^\circ 时,表示岩石为压缩剪切受力状态。

    同样,提取三棱齿和常规平面齿的三向主应力,计算得到洛德角的变化情况(见图6图7)。从图6图7可以看出,2种切削齿的第一排网格为将要出现塑性变形的网格,其 {\theta _\sigma } 均较大,岩石表现为明显受压状态,说明与切削齿工作面接触的岩石主要受到压缩和压剪作用开始产生塑性变形。

    图  6  常规平面齿洛德角变化规律
    Figure  6.  Change rule of Lode angle of a conventional planar cutter
    图  7  三棱齿洛德角变化规律
    Figure  7.  Change rule of Lode angle of a triangular prismatic cutter

    常规平面齿与三棱齿的第二排和第三排网格的受力状态存在明显差异,图6的3—5号网格 {\theta _\sigma } 偏小;图7的1—3号网格 {\theta _\sigma } 偏小。这说明岩石进入塑性变形阶段后,与常规平面齿的边沿齿刃附近接触的岩石出现明显剪切和拉伸受力状态,靠近齿中心处岩石仍主要表现为压缩受力状态;而三棱齿在靠近齿中心区域的岩石出现明显的剪切和拉剪受力状态。以上研究表明,常规平面齿边沿的齿刃使岩石产生明显的剪切作用;三棱齿的脊形结构使靠近齿中心处岩石产生明显的剪切和拉剪作用,进而使岩石进入拉剪受力状态的区域增大。

    图3图4的数值模拟结果中提取切削齿的切向力,得到切向力随时间变化的规律(见图8)。从图8可以看出,三棱齿的切向力波动幅度明显小于常规平面齿。同时,根据切向力均值,计算得到相同吃入深度、不同角度下切削齿破碎比功(见图9图10)。从图9图10可以看出,前倾角较大时,三棱齿的破碎比功低于常规平面齿;存在一定侧转角时,三棱齿的破碎比功也低于常规平面齿。

    图  8  切向力随时间变化的规律
    Figure  8.  Change rule of tangential force with time
    图  9  破碎比功随前倾角变化的规律
    Figure  9.  Change rule of the crushing work ratio with the rake angle
    图  10  破碎比功随侧转角变化规律
    Figure  10.  Change rule of the crushing work ratio with the side rake angle

    为了验证数值模拟结果的可靠性,同时了解三棱齿的破岩过程,采用牛头刨床试验机进行单齿直线刮切试验。试验条件与直线切削数值模拟的条件一致,切削齿直径均为15.9 mm,岩石选用表面平整的300 mm×250 mm×250 mm武胜砂岩。切削齿与齿座钎焊固定后安装在刨床刀柄上,并预设不同的切削齿角度、切削深度,采用牛头刨床为刀柄提供直线运动的动力,实现切削齿直线破碎岩石。

    试验时进行3次重复刮切,计算单次刮切的切向力平均值,选择最接近3次刮切总切向力平均值的试验数据,通过数据采集系统,得到前倾角15°、切削深度1.5 mm时常规平面齿与三棱齿切向力的变化情况(见图11,图中虚线为切向力均值)。

    图  11  三棱齿与常规平面齿切向力对比
    Figure  11.  Comparison of tangential force between triangular prismatic cutter and planar cutter

    图11可以看出,在同一切削参数下,常规平面齿的切向力均值大于三棱齿。切削全过程切向力变化的标准差计算结果表明,三棱齿切向力标准差为349.09 N,常规平面齿切向力标准差为439.53 N,在相同条件下,三棱齿切削破碎砂岩所需的切向力及切向力波动幅度均小于常规平面齿,即三棱齿破碎岩石时受到的振动冲击小;且随着前倾角和侧转角增大,三棱齿的切向力及其波动幅度均有所增大。

    对比试验结果与数值模拟结果发现,数值模拟结果与试验结果的误差率均小于15%,验证了数值模拟结果的可靠性。试验结果和数值模拟结果表明,三棱齿在切削岩石的过程中受到的切削力和切削力波动幅度均小于常规平面齿,可以推测三棱齿在实际施工条件下比常规平面齿的工作寿命更长。

    为验证数值模拟和室内试验的结论,在辽河油田进行了现场试验。辽河油区地层环境复杂,地层可钻性差,尤其是中生界以灰色厚层块状花岗质角砾岩为主,棱角状砾石含量一般大于50%,砾石成分以花岗质岩块为主,矿物为单颗粒石英、碱性长石和斜长石,岩性致密,研磨性高,冲击性强,极大地威胁切削齿和钻头的工作效率和寿命。

    综合考虑三棱齿的耐磨抗冲性、拉剪破岩作用和切削力波动幅度较小的特点,在该地区某井进行了常规PDC钻头和三棱齿钻头同井对比试验。首先采用常规PDC钻头钻进,钻进井段3 839~4 057 m;随后钻头从角砾岩地层进入潜山混合花岗岩地层,地层的研磨性和冲击性增强,机械钻速降低,无法继续钻进,于是采用三棱齿钻头钻进,三棱齿钻头能够正常钻进,最终完成4 057~4 235 m井段的钻进,平均机械钻速5.93 m/h。

    由试验结果可以看出,三棱齿钻头的工作地层主要是混合花岗岩地层,环境更加复杂与恶劣,但仍然能保证较大的进尺和较快的机械钻速,而常规PDC钻头在该地层无法顺利钻进,说明三棱齿比常规平面齿更加适用于钻进冲击大、研磨性强的混合花岗岩地层。三棱齿钻头出井后,三棱齿大多为正常的磨损失效,未出现明显的冲击破坏,说明三棱齿在花岗岩中表现出较强的抗冲击性能,这与数值模拟和室内试验的结论相符合,也表明三棱齿能够延长钻头的使用寿命。

    1)三棱齿工作表面特有的脊形结构,使其主要通过脊形结构产生点载荷和拉剪作用破坏岩石,能够减小切削齿受到的冲击,从而提高钻头的抗冲击能力,延长钻头的使用寿命,提高破岩效率。

    2)三棱齿刮切破岩时的切向力及切向力波动幅度更小,对降低钻头破碎脆硬性岩石时的振动非常有利,同时可降低钻头的黏滑现象,提高钻头造斜能力。

    3)现场试验表明,三棱齿布置于刀翼鼻部和肩部的PDC钻头,在冲击性强的混合花岗岩中仍具有较高的机械钻速,即三棱齿适用于钻进冲击性强、研磨性高的地层。

    4)影响切削齿切削效果的实际因素较多,如温度、吃入岩石深度等都会对三棱齿的破岩机理和效率造成影响,建议今后应继续结合上述因素进行深入研究。

  • 图  1   智能钻井系统组成

    Figure  1.   Composition of intelligent drilling system

    图  2   智能录井平台架构

    Figure  2.   Architecture of intelligent logging

    图  3   录井采集技术体系

    Figure  3.   Logging acquisition technology system

    表  1   录井与钻井智慧平台架构的对比

    Table  1   Comparison of intelligent platform architecture between drilling and logging

    层次 智能录井[64] 智能钻完井[1] 钻井[28]
    用户层  移动端、Pad端、PC端的实时监控、技术支持、协同研究、远程决策  钻井工程师、完井工程师、地质工程师、管理人员、管理员
    网络层  局域网、广域网
    应用层  数据管理平台(分类存储与查询等)、数据挖掘平台(统计分析方法)、成果输出平台(岩性自动识别、物性评价、油气层解释、工程智能预警等)  机械钻速智能预测与参数优化、井眼轨迹智能优化与闭环调控、钻井风险智能预警与动态调控、固井质量智能评价与优化控制、压裂方案智能设计和优化调控、完井方案智能设计与生产优化及钻完井多过程动态耦合与多目标协同优化  钻头选型、井壁稳定、钻速预测、卡钻预警、钻井参数优化等
    装备层  智能钻头、井下测量短节、智能导向工具、智能钻杆、智能滑套、智能钻机
    算法层/数据操作层  机理数据融化、数据增强、小样本学习、迁移学习、强化学习、卷积神经网络、小波分析、在线学习、图算法、遗传算法  数据清洗、资源调度、计算工程
    数据层  各类录井仪器、传感器采集的数据、图像、音频/视频等信息  物探数据、综合录井数据、测井数据、岩心数据、地质资料数据、随钻数据、文档资料、其他数据  井信息、录井、测井、地质、地震实时级历时数据
    下载: 导出CSV

    表  2   录井信息处理与解释评价技术体系

    Table  2   Technical system of logging information processing, interpretation, and evaluation

    录井信息处理 解释 评价及应用
    深度校正与数据源深度匹配
    影响因素校正或消除
    散失量恢复或原位重构
    解谱解耦与信息挖掘
    曲线、图谱、影像特征提取
    多元、多维、多尺度数据融合
    平滑、抽稀、插值等处理
    标准化、归一化处理
    岩性、岩相识别
    古生物鉴定及沉积环境识别
    成分及结构、构造识别
    地质层位及地质小层识别
    流体类型及赋存状态识别
    物源、油(气)源识别
    油(气)成因识别
    含水性及水型识别
    有效储层识别
    油气水层解释
    VOCs类型识别
    钻井工况与安全风险识别
    高压层及其成因识别
    溢流预警
    井漏及其原因识别
    物性及孔隙结构评价
    烃源岩特性评价
    脆性、岩石力学、可压性评价
    润湿性、水淹层评价
    含油气丰度及油气性质评价
    含水性或含水率评价
    甜点评价或产能预测
    单井评价或选区评价
    地层压力随钻评价
    可钻性、井壁稳定性评价
    井筒封闭性或盖层评价
    热储及锂、钾、铀丰度评价
    钻井地质设计
    水平井综合地质导向
    压裂选层
    下载: 导出CSV
  • [1] 李根生,宋先知,祝兆鹏,等. 智能钻完井技术研究进展与前景展望[J]. 石油钻探技术,2023,51(4):35–47. doi: 10.11911/syztjs.2023040

    LI Gensheng, SONG Xianzhi, ZHU Zhaopeng, et al. Research progress and the prospect of intelligent drilling and completion technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 35–47. doi: 10.11911/syztjs.2023040

    [2] 王敏生,光新军. 智能钻井技术现状与发展方向[J]. 石油学报,2020,41(4):505–512. doi: 10.7623/syxb202004013

    WANG Minsheng, GUANG Xinjun. Status and development trends of intelligent drilling technology[J]. Acta Petrolei Sinica, 2020, 41(4): 505–512. doi: 10.7623/syxb202004013

    [3] 李宗田,肖勇,李宁,等. 低油价下的页岩油气开发工程技术新进展[J]. 断块油气田,2021,28(5):577–585.

    LI Zongtian, XIAO Yong, LI Ning, et al. New progress in shale oil and gas development engineering technology under low oil prices[J]. Fault-Block Oil & Gas Field, 2021,28(5): 577–585.

    [4]

    MCCARTHY J, MINSKY M L, ROCHESTER N, et al. A proposal for the Dartmouth summer research project on artificial intelligence: August 31, 1955[J]. AI Magazine, 2006, 27(4): 12–14.

    [5]

    GAINITDINOV B, MESHALKIN Y, ORLOV D, et al. Predicting mineralogical composition in unconventional formations using machine learning and well logging data[R]. IPTC 23487, 2024.

    [6]

    YANG Tao, ARIEF I H, NIEMANN M, et al. A machine learning approach to predict gas oil ratio based on advanced mud gas data[R]. SPE 195459, 2019.

    [7] 陈凯枫,杨学文,宋先知,等. 基于工程录井数据的井漏智能诊断方法[J]. 石油机械,2022,50(11):16–22.

    CHEN Kaifeng, YANG Xuewen, SONG Xianzhi, et al. An intelligent diagnosis method for lost circulation based on engineering logging data[J]. China Petroleum Machinery, 2022, 50(11): 16–22.

    [8] 刘枫. 顺北地区地层四压力智能预测软件研发与应用[D]. 北京:中国石油大学(北京),2023.

    LIU Feng. Research and application of intelligent prediction software for formation four pressure in Shunbei Area[D]. Beijing: China University of Petroleum(Beijing), 2023.

    [9] 匡立春,刘合,任义丽,等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发,2021,48(1):1–11. doi: 10.11698/PED.2021.01.01

    KUANG Lichun, LIU He, REN Yili, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1): 1–11. doi: 10.11698/PED.2021.01.01

    [10] 王志战. 一体化、智能化时代的录井技术发展方向探讨[J]. 录井工程,2020,31(1):1–6. doi: 10.3969/j.issn.1672-9803.2020.01.001

    WANG Zhizhan. Discussion on the development direction of mud logging technology in the era of integration and intellectualization[J]. Mud Logging Engineering, 2020, 31(1): 1–6. doi: 10.3969/j.issn.1672-9803.2020.01.001

    [11] 王志战. 中国石化录井技术新进展与发展方向思考[J]. 石油钻探技术,2023,51(4):124–133. doi: 10.11911/syztjs.2023027

    WANG Zhizhan. Thoughts for new progress and development directions of Sinopec's surface logging technology[J]. Petroleum Drilling Techniques, 2023, 51(4): 124–133. doi: 10.11911/syztjs.2023027

    [12] 闫铁,许瑞,刘维凯,等. 中国智能化钻井技术研究发展[J]. 东北石油大学学报,2020,44(4):15–21. doi: 10.3969/j.issn.2095-4107.2020.04.003

    YAN Tie, XU Rui, LIU Weikai, et al. Research and development of intelligent drilling technology in China[J]. Journal of Northeast Petroleum University, 2020, 44(4): 15–21. doi: 10.3969/j.issn.2095-4107.2020.04.003

    [13] 张鑫鑫,梁博文,张晓龙,等. 智能钻井装备与技术研究进展[J]. 煤田地质与勘探,2023,51(9):20–30. doi: 10.12363/issn.1001-1986.23.06.0324

    ZHANG Xinxin, LIANG Bowen, ZHANG Xiaolong, et al. Research progress of intelligent drilling equipment and technology[J]. Coal Geology & Exploration, 2023, 51(9): 20–30. doi: 10.12363/issn.1001-1986.23.06.0324

    [14]

    HU Qin, LIU Qingyou. Intelligent drilling: a prospective technology of tomorrow[R]. SPE 103781, 2006.

    [15]

    RASSENFOSS S. Drilling automation: a robot takes over the drilling floor[J]. Journal of Petroleum Technology, 2021, 73(12): 18–22. doi: 10.2118/1221-0018-JPT

    [16]

    LAWRENCE L, REDMOND B, RUSSELL R B, et al. Intelligent wired drill-pipe system provides significant improvements in drilling performance on offshore Australia development[R]. OTC 20067, 2009.

    [17]

    JELLISON M J, PRIDECO G, HALL D R. Intelligent drill pipe creates the drilling network[R]. SPE 80454, 2003.

    [18]

    TURNER D R, HEAD P F, YURATICH M A, et al. The all electric BHA: recent developments toward an intelligent coiled-tubing drilling system[R]. SPE 54469, 1999.

    [19]

    VALVERDE E. Intelligent near-bit reamer affords same-trip drilling, hole enlargement and rathole reduction for optimal deepwater well construction[R]. OTC 28402, 2018.

    [20]

    TILLEY J, NAIR V N, HAMOUDI L. Case study: intelligent RSS improving drilling performance on three mile laterals in the Appalachian Basin[R]. SPE 201723, 2020.

    [21]

    AL ARFI S, ALSOWAIDI F, RUIZ F, et al. New intelligent push-the-bit rotary steerable system helped reducing well time and maximized directional drilling performance, Abu Dhabi, UAE[R]. SPE 207537, 2021.

    [22]

    CORSER G P, HARMSE J E, CORSER B A, et al. Field test results for a real-time intelligent drilling monitor[R]. SPE 59227, 2000.

    [23]

    ZHU J, ZENG L. Intelligent pressure control system on drilling process[R]. OTC 30828, 2020.

    [24]

    SHEN Xinyu, LIU Sen, SU Qiang, et al. Intelligent switch control algorithm of the push-the-bit rotary steerable drilling system[R]. ARMA 20233-0558, 2023.

    [25]

    ROWSELL P J, WALLER M D. Intelligent control of drilling systems[R]. SPE 21927, 1991.

    [26]

    WAN Youwei, LIU Xiangjun, XIONG Jian, et al. Intelligent prediction of drilling rate of penetration based on method-data dual validity analysis[J]. SPE Journal, 2024, 29(5): 2257–2274. doi: 10.2118/217977-PA

    [27]

    ABUGHABAN M, ALSHAARAWI A, MENG Cui, et al. Optimization of drilling performance based on an intelligent drilling advisory system[R]. IPTC 19269, 2019.

    [28]

    XIE Tao, HOU Xinxin, HUO Hongbo, et al. Improving drilling efficiency using intelligent decision system for drilling in Bohai Oilfield based on big data[R]. SPE 215427, 2023.

    [29]

    RASHIDI B, HARELAND G, TAHMEEN M, et al. Real-time bit wear optimization using the intelligent drilling advisory system[R]. SPE 136006, 2010.

    [30]

    WANG Jianhua, GUAN Zhen, LIU Muchen, et al. Drilling stuck probability intelligent prediction based on LSTM considering local interpretability[R]. ARMA 2023-0326, 2023.

    [31] 殷启帅,杨进,曹博涵,等. 基于长短期记忆神经网络的深水钻井工况实时智能判别模型[J]. 石油钻采工艺,2022,44(1):97–104.

    YIN Qishuai, YANG Jin, CAO Bohan, et al. Real-time intelligent rig activities classification model of deep-water drilling using long short-term memory (LSTM) network[J]. Oil Drilling & Production Technology, 2022, 44(1): 97–104.

    [32] 李雪松,张骁,管震,等. 基于图像识别技术的钻井井漏溢流智能报警系统开发[J]. 世界石油工业,2021,28(1):48–54.

    LI Xuesong, ZHANG Xiao, GUAN Zhen, et al. Development of the drilling mud loss and overflow intelligent alarm system based on the image recognition technology[J]. World Petroleum Industry, 2021, 28(1): 48–54.

    [33]

    WANG Han, CHEN Dong, YE Zhihui, et al. Intelligent planning of drilling trajectory based on computer vision[R]. SPE 197362, 2019.

    [34] 张晓东,朱正喜. 智能钻井技术研究[J]. 石油钻采工艺,2010,32(1):1–4. doi: 10.3969/j.issn.1000-7393.2010.01.002

    ZHANG Xiaodong, ZHU Zhengxi. Study of intelligent drilling technology[J]. Oil Drilling & Production Technology, 2010, 32(1): 1–4. doi: 10.3969/j.issn.1000-7393.2010.01.002

    [35]

    de WARDT J. Guest editorial: trends in remote operations and drilling systems automation point to an expanding footprint what comes next and when?[J]. Journal of Petroleum Technology, 2022, 74(11): 10–13. doi: 10.2118/1122-0010-JPT

    [36] 刘合. 油气勘探开发数字化转型人工智能应用大势所趋[J]. 石油科技论坛,2023,42(3):1–9.

    LIU He. Digital transformation of oil and gas exploration and development; unstoppable AI application[J]. Petroleum Science and Technology Forum, 2023, 42(3): 1–9.

    [37] 宋先知,姚学喆,李根生,等. 基于LSTM-BP神经网络的地层孔隙压力计算方法[J]. 石油科学通报,2022,7(1):12–23. doi: 10.3969/j.issn.2096-1693.2022.01.002

    SONG Xianzhi, YAO Xuezhe, LI Gensheng, et al. A novel method to calculate formation pressure based on the LSTM-BP neural network[J]. Petroleum Science Bulletin, 2022, 7(1): 12–23. doi: 10.3969/j.issn.2096-1693.2022.01.002

    [38]

    ROWE H, MAINALI P, NIETO M, et al. Geochemical perspectives on cuttings-based chemostratigraphy and mineral modeling in the Delaware Basin, Texas and New Mexico[R]. URTEC 2019-1068, 2019.

    [39]

    HUSSAIN M, AMAO A, AL-RAMADAN K, et al. A novel method to develop chemostratigraphy using X-ray fluorescence spectral raw data[R]. URTEC 2021-5478, 2021.

    [40]

    MICHAEL N A, SCHEIBE C, CRAIGIE N W. Automations in chemostratigraphy: toward robust chemical data analysis and interpretation[R]. SPE 204892, 2021.

    [41] 唐诚,王崇敬,梁波,等. 基于机器学习算法的页岩气评价参数计算模型研究[J]. 录井工程,2021,32(4):18–22. doi: 10.3969/j.issn.1672-9803.2021.04.003

    TANG Cheng, WANG Chongjing, LIANG Bo, et al. Study on shale gas evaluation parameter calculation model based on machine learning algorithm[J]. Mud Logging Engineering, 2021, 32(4): 18–22. doi: 10.3969/j.issn.1672-9803.2021.04.003

    [42] 刘雨龙. 基于深度学习的岩屑智能分析方法研究[D]. 北京:中国石油大学(北京),2023.

    LIU Yulong. Research on intelligent analysis method of cuttings based on deep learning[D]. Beijing: China University of Petro-leum(Beijing), 2023.

    [43] 夏文鹤,谢万洋,唐印东,等. 砂样岩屑图像特征的岩性智能高效识别[J]. 石油地球物理勘探,2023,58(3):495–506.

    XIA Wenhe, XIE Wanyang, TANG Yindong, et al. Intelligent and efficient lithology identification based on image features of returned cuttings[J]. Oil Geophysical Prospecting, 2023, 58(3): 495–506.

    [44] 张德君,魏伟,刘明艳,等. 基于综合录井数据的地层岩性智能识别方法[J]. 西部探矿工程,2023,35(4):54–59. doi: 10.3969/j.issn.1004-5716.2023.04.016

    ZHANG Dejun, WEI Wei, LIU Mingyan, et al. Intelligent identification method of formation lithology based on comprehensive logging data[J]. West-China Exploration Engineering, 2023, 35(4): 54–59. doi: 10.3969/j.issn.1004-5716.2023.04.016

    [45]

    JACOBS T. Mud-gas breakthrough Equinor develops real-time reservoir-fluid identification[J]. Journal of Petroleum Technolog, 2021, 73(2): 37–39. doi: 10.2118/0221-0037-JPT

    [46]

    HAFIDZ ARIEF I, YANG Tao. Real time reservoir fluid log from advanced mud gas data[R]. SPE 201323, 2020.

    [47]

    YANG Tao, YERKINKYZY G, ULEBERG K, et al. Predicting reservoir fluid properties from advanced mud gas data[J]. SPE Reservoir Evaluation & Engineering, 2021, 24(2): 358–366.

    [48]

    UNGAR F, MCGILL A, NYGAARD M T, et al. Fluid identification from mud gas in the overburden: a case study for the Snorre Field[R]. SPE 214440, 2023.

    [49]

    YANG Tao, ULEBERG K, CELY A, et al. Unlock large potentials of standard mud gas for real-time fluid typing[R]. SPWLA 2022-0007, 2022.

    [50]

    KOPAL M, YERKINKYZY G, NYGÅRD M T, et al. Real-time fluid identification from integrating advanced mud gas and petrophysical logs[R]. SPWLA 2022-0009, 2022.

    [51]

    BUCKLE P S G, ABDULLAH A F H, ZAINI N, et al. Utilization of digitalized numerical model derived from advanced mud gas data for low cost fluid phase identification, derisking drilling and effective completion plan in depleted reservoir[R]. SPWLA 2022-0092, 2022.

    [52]

    WRIGHT A C. Estimation of gas/oil ratios and detection of unusual formation fluids from mud logging gas data[R]. SPWLA 1996-CC, 1996.

    [53]

    MALIK M, HANSON S A, CLINCH S. Maximizing value from mudlogs: integrated approach to determine net pay[R]. SPWLA 5028, 2020.

    [54] 严伟丽,高楚桥,赵彬,等. 基于气测录井资料的气油比定量计算方法[J]. 科学技术与工程,2020,20(23):9287–9292.

    YAN Weili, GAO Chuqiao, ZHAO Bin, et al. Quantitative calculation method of gas-oil ratio in gas logging data[J]. Science Technology and Engineering, 2020, 20(23): 9287–9292.

    [55]

    JIANG Han, DAIGLE H, TIAN Xiao, et al. A comparison of clustering algorithms applied to fluid characterization using NMRT1-T2 maps of shale[J]. Computers & Geosciences, 2019, 126: 52–61.

    [56] 夏文鹤,唐印东,李皋,等. 基于岩屑录井图像的井壁稳定性智能预测方法[J]. 天然气工业,2023,43(12):71–83.

    XIA Wenhe, TANG Yindong, LI Gao, et al. An intelligent prediction method for wellbore stability based on drilling cuttings logging images[J]. Natural Gas Industry, 2023, 43(12): 71–83.

    [57]

    ZHANG Shaohui, HUANG Weihe, BI Guoqiang, et al. Intelligent risk identification and warning model for typical drilling operation scenes and its application[R]. SPE 214599, 2023.

    [58] 胡志强,杨进,王磊,等. 钻井工况智能识别与时效分析技术[J]. 石油钻采工艺,2022,44(2):241–246.

    HU Zhiqiang, YANG Jin, WANG Lei, et al. Intelligent identification and time-efficiency analysis of drilling operation conditions[J]. Oil Drilling & Production Technology, 2022, 44(2): 241–246.

    [59] 张矿生,宫臣兴,陆红军,等. 基于集成学习的井漏智能预警模型及智能推理方法[J]. 石油钻采工艺,2023,45(1):47–54.

    ZHANG Kuangsheng, GONG Chenxing, LU Hongjun, et al. Intelligent early warning model and intelligent reasoning method based on integrated learning for loss circulation[J]. Oil Drilling & Production Technology, 2023, 45(1): 47–54.

    [60] 张敏. 渤海中深层钻井地层三压力智能预测方法研究[D]. 北京:中国石油大学(北京),2023.

    ZHANG Min. Research on the intelligent prediction method of triple pressure in the middle and deep drilling strata in Bohai Sea[D]. Beijing: China University of Petroleum(Beijing), 2023.

    [61] 阎荣辉,黄子舰,杨永强,等. “互联网+” 时代的智慧录井系统应用探索[J]. 录井工程,2020,31(2):1–5. doi: 10.3969/j.issn.1672-9803.2020.02.001

    YAN Ronghui, HUANG Zijian, YANG Yongqiang, et al. Application and exploration of smart logging system in the Internet Plus era[J]. Mud Logging Engineering, 2020, 31(2): 1–5. doi: 10.3969/j.issn.1672-9803.2020.02.001

    [62] 方铁园,马宏伟,郭龙飞,等. 智慧录井平台建设及其在长庆油田的创新应用[J]. 录井工程,2023,34(3):97–101. doi: 10.3969/j.issn.1672-9803.2023.03.015

    FANG Tieyuan, MA Hongwei, GUO Longfei, et al. Construction of smart mud logging platform and its innovative application in Changqing Oilfield[J]. Mud Logging Engineering, 2023, 34(3): 97–101. doi: 10.3969/j.issn.1672-9803.2023.03.015

    [63] 张锦宏,周爱照,成海,等. 中国石化石油工程技术新进展与展望[J]. 石油钻探技术,2023,51(4):149–158.

    ZHANG Jinhong, ZHOU Aizhao, CHENG Hai, et al. New progress and prospects for Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 149–158.

    [64] 梁海波,宋洋,于志刚,等. 钻井液流变性实时测量方法及系统研究[J]. 石油机械,2022,50(1):10–18.

    LIANG Haibo, SONG Yang, YU Zhigang, et al. Real-time measurement method and systematic study on drilling fluid rheology[J]. China Petroleum Machinery, 2022, 50(1): 10–18.

    [65] 孟济良,吴龙斌,张学亭. 岩屑录井的新技术:DL-1型地质录井自动捞砂机介绍[J]. 石油勘探与开发,1984,11(5):75–79.

    MENG Jiliang, WU Longbin, ZHANG Xueting. A new technology of cuttings logging: DL-1 type automatic cuttings acquisition machine[J]. Petroleum Exploration and Development, 1984, 11(5): 75–79.

    [66]

    ALSHEHRI A, KATTERBAUER K, YOUSEF A. Real-time autoregressive deep learning framework for in-line automatic surface logging[R]. SPE 214079, 2023.

    [67]

    LI Sanguo, XIAO Lizhi, LI Xin, et al. A novel NMR instrument for real time drilling fluid analysis[J]. Microporous and Mesoporous Materials, 2018, 269: 138–141. doi: 10.1016/j.micromeso.2017.08.038

    [68] 张志财,刘保双,王忠杰,等. 钻井液性能在线监测系统的研制与现场应用[J]. 钻井液与完井液,2020,37(5):597–601.

    ZHANG Zhicai, LIU Baoshuang, WANG Zhongjie, et al. Development and field application of an online drilling fluid property monitoring system[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 597–601.

    [69] 王鹏,刘伟,张果. 钻井液性能自动监测装置的现状及改进建议[J]. 钻采工艺,2022,45(3):42–47. doi: 10.3969/J.ISSN.1006-768X.2022.03.08

    WANG Peng, LIU Wei, ZHANG Guo. Status quo and improvement suggestions of automatic monitoring equipment for drilling fluid performance[J]. Drilling & Production Technology, 2022, 45(3): 42–47. doi: 10.3969/J.ISSN.1006-768X.2022.03.08

    [70] 张好林,杨传书,李昌盛,等. 钻井数字孪生系统设计与研发实践[J]. 石油钻探技术,2023,51(3):58–65.

    ZHANG Haolin, YANG Chuanshu, LI Changsheng, et al. Design and research practice of a drilling digital twin system[J]. Petroleum Drilling Techniques, 2023, 51(3): 58–65.

    [71]

    BALACHANDRAN P A, PADMANABHAN K V K. Integrated operations system: implementation of a truly integrated digital oil field and development of digital twin[R]. OTC 32841, 2023.

    [72]

    WANG Peixian, WANG Xiaolin, MA Jun, et al. Digital and intelligent technology in underground gas storage operation based on digital twin technologies[R]. ISOPE I-23-008, 2023.

    [73]

    BUSOLLO C, ABDO E, KATTAR M, et al. Evolution of a digital twin for underground gas storage wells: thermal effects of tubing gas flow on annulus pressure in transient conditions[R]. SPE 220006, 2024.

    [74]

    WANG Peixian, MA Jun, LI Zunzhao, et al. Integrated simulation technology of underground gas storage based on digital twin technologies[R]. ISOPE I-24-043, 2024.

    [75] 刘合,任义丽,李欣,等. 油气行业人工智能大模型应用研究现状及展望[J]. 石油勘探与开发,2024,51(4):910–923.

    LIU He, REN Yili, LI Xin, et al. Research status and application of artificial intelligence large models in the oil and gas industry[J]. Petroleum Exploration and Development, 2024, 51(4): 910–923.

    [76]

    YI M, CEGLINSKI K, ASHOK P, et al. Applications of large language models in well construction planning and real-time operation[R]. SPE 217700, 2024.

    [77]

    PACIS F J, ALYAEV S, PELFRENE G, et al. Enhancing information retrieval in the drilling domain: zero-shot learning with large language models for question-answering[R]. SPE 217671, 2024.

    [78]

    AMEUR-ZAIMECHE O, KECHICHED R, HEDDAM S, et al. Real-time porosity prediction using gas-while-drilling data and machine learning with reservoir associated gas: case study for Hassi Messaoud Field, Algeria[J]. Marine and Petroleum Geology, 2022, 140: 105631. doi: 10.1016/j.marpetgeo.2022.105631

    [79]

    OULADMANSOUR A, AMEUR-ZAIMECHE O, KECHICHED R, et al. Integrating drilling parameters and machine learning tools to improve real-time porosity prediction of multi-zone reservoirs. Case study: Rhourd Chegga Oilfield, Algeria[J]. Geoenergy Science and Engineering, 2023, 223: 211511.

  • 期刊类型引用(12)

    1. 张诗峥,赵东雅,王文博. 基于热力耦合仿真的PDC齿磨损特性及破岩机理研究. 石油矿场机械. 2025(03): 40-48 . 百度学术
    2. 陈炼,魏小虎,曹强,周岩,杨迎新,胡川,赵志杰,伍彬. 凸棱非平面聚晶金刚石齿的破岩机理及在含砾地层中的应用. 中国机械工程. 2024(02): 371-379 . 百度学术
    3. 荣准,杨学军,张航,颜爽,张琦,张龙龙. 五宝场硬塑性地层斧形曲面PDC齿破岩性能研究. 钻探工程. 2024(02): 85-93 . 百度学术
    4. 李基伟,李乾,田胜雷,黄达,李玉梅,席岩. 东海深部高研磨地层冲击钻井PDC齿优选研究. 石油机械. 2024(08): 77-84 . 百度学术
    5. 谢志涛,赵宇璇,郭勇,吴德胜,李亚东. 脊形PDC齿的机械性能和破岩效果. 金刚石与磨料磨具工程. 2024(05): 599-606 . 百度学术
    6. 程伟,幸雪松,楼一珊,朱亮,尹彪. 三棱形PDC齿破岩特性数值模拟研究. 石油机械. 2024(11): 21-28 . 百度学术
    7. 刘伟吉,阳飞龙,董洪铎,程润,祝效华. 异形PDC齿混合切削破碎花岗岩特性研究. 工程力学. 2023(03): 245-256 . 百度学术
    8. 李涛,苏强,杨哲,徐卫强,胡锡辉. 川西地区超深井钻井完井技术现状及攻关方向. 石油钻探技术. 2023(02): 7-15 . 本站查看
    9. 王勇军,梁伟,张涛,杜志强,王磊,佟铮. 深部地热钻探中硬塑性泥岩地层钻头应用研究. 钻探工程. 2023(03): 92-98 . 百度学术
    10. 盛勇,刘川福,赵亮,丁峰,唐斌,闵鹏. 塔里木盆地HT区块难钻白云岩地层提速技术. 化学工程与装备. 2023(05): 75-77 . 百度学术
    11. 王勇军,聂德久,张涛,冯守涛,邸佳强,王磊,佟铮. 雄安新区D19地热勘探井钻探技术及成果. 钻探工程. 2023(S1): 299-304 . 百度学术
    12. 吴泽兵,席凯凯,赵海超,黄海,张文超,杨晨娟. 仿生PDC齿旋转破岩时的温度场和破岩特性模拟研究. 石油钻探技术. 2022(02): 71-77 . 本站查看

    其他类型引用(9)

图(3)  /  表(2)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  39
  • PDF下载量:  145
  • 被引次数: 21
出版历程
  • 收稿日期:  2024-05-07
  • 网络出版日期:  2024-10-08
  • 刊出日期:  2024-09-24

目录

/

返回文章
返回