随钻测井仪流道转换器优化设计与数值分析

药晓江, 卢华涛, 尚捷, 王清华, 李洋

药晓江, 卢华涛, 尚捷, 王清华, 李洋. 随钻测井仪流道转换器优化设计与数值分析[J]. 石油钻探技术, 2021, 49(5): 121-126. DOI: 10.11911/syztjs.2021069
引用本文: 药晓江, 卢华涛, 尚捷, 王清华, 李洋. 随钻测井仪流道转换器优化设计与数值分析[J]. 石油钻探技术, 2021, 49(5): 121-126. DOI: 10.11911/syztjs.2021069
YAO Xiaojiang, LU Huatao, SHANG Jie, WANG Qinghua, LI Yang. Optimization Design and Numerical Analysis of Flow Passage Converters in LWD Tools[J]. Petroleum Drilling Techniques, 2021, 49(5): 121-126. DOI: 10.11911/syztjs.2021069
Citation: YAO Xiaojiang, LU Huatao, SHANG Jie, WANG Qinghua, LI Yang. Optimization Design and Numerical Analysis of Flow Passage Converters in LWD Tools[J]. Petroleum Drilling Techniques, 2021, 49(5): 121-126. DOI: 10.11911/syztjs.2021069

随钻测井仪流道转换器优化设计与数值分析

基金项目: 国家重点研发计划项目“深海关键技术与装备”子课题“大直径旋转导向钻井系统装备研制与示范作业”(编号:2017YFC0307100)部分研究内容
详细信息
    作者简介:

    药晓江(1982—),男,山西晋中人,2006年毕业于山东理工大学车辆工程专业,2013年获北京航空航天大学车辆工程专业博士学位,中级工程师,主要从事旋转导向钻井系统及随钻测井仪器研发工作。E-mail:yaoxj4@cosl.com.cn

  • 中图分类号: P314

Optimization Design and Numerical Analysis of Flow Passage Converters in LWD Tools

  • 摘要: 随钻测井仪流道转换器流道截面设计不合理,不仅会造成随钻测井仪器内流道局部流场紊乱,致使仪器局部冲刷严重,造成仪器使用寿命缩短;还会导致仪器压力损失偏高,影响仪器的适用性。为此,采用CFD方法,对某型随钻测井仪流道转换器进行优化设计,并对4种设计方案进行了全三维数值模拟和对比,认为影响流道转换器流场性能的主要因素是扩张角和内流道截面积的连续性。最优设计方案的扩张角较小,内流道截面积连续,轴向速度下降更平缓,总压损失最小,流场流速分布更均匀。试验结果表明,流道转换器扩张角、内流道截面积不连续性与流道转换器流场分布均匀性呈负相关,与压力损失呈正相关;总压损失系数理论值与试验值对应的差值不大于0.076%,且变化趋势均与理论分析结果相同。研究结果为流道转换器的优化设计提供了理论依据。
    Abstract: Improper design of flow passage converter section in LWD ( logging while drilling) tools can cause local flow-field turbulence and result in serious local erosion of the tool, thus reducing its service life. It can also lead to large pressure loss of the tool and affect its applicability. For this reason, CFD (computational fluid dynamics) method was applied for the optimization design of a certain type of flow passage converter in an LWD tool. According to the full 3D numerical simulation and comparison of four design schemes, the main factors affecting the flow-field performance of the flow passage converter were thought to be the expansion angle and the continuity of the cross-sectional area of the internal flow passage. The optimal design has a smaller expansion angle, a more continuous cross-sectional area of the internal flow passage, a gentler decline in axial velocity, a minimum total pressure loss, and a more uniform flow velocity distribution in the flow field. The research results showed that the expansion angle and the discontinuity of the cross-sectional area of the internal flow passage were negatively associated with the uniformity of the flow field distribution in the flow passage converter and positively with the pressure loss. The difference between theoretical and experimental total pressure loss coefficients was not more than 0.076%, and the change trend was the same as the result of theoretical analysis. The research results can effectively serve as a theoretical basis for the optimization design of flow passage converters.
  • 图  1   不同设计方案的流道转换器基本结构

    Figure  1.   Design schemes for the flow passage converter

    图  2   流道转换器流体计算域

    Figure  2.   Fluid computational domain of the flow passage converter

    图  3   流道转换器流体计算域网格划分

    Figure  3.   Grid division for fluid computational domain of the flow passage converter

    图  4   流通面积沿轴向的变化情况

    Figure  4.   Flow area variation in the axial direction

    图  5   流体轴向速度的变化曲线

    Figure  5.   Axial velocity variation of fluid

    图  6   纵截面湍流黏性云图

    Figure  6.   Turbulent viscosity nephogram of the longitudinal section

    图  7   出口截面轴向速度分布云图

    Figure  7.   Axial velocity nephogram of the outlet section

    图  8   水力循环测试装置

    Figure  8.   Hydraulic cycle test device

    表  1   流道转换器设计方案

    Table  1   Design schemes for the flow passage converter

    设计方案α/(°)d/mm结构类型加工工艺
    原始设计4516 分体式,流道突变简单
    优化方案1456分体式,流道突变较简单
    优化方案2306分体式,流道突变较简单
    优化方案3200整体式,流道连续复杂
    下载: 导出CSV

    表  2   流道转换器4种设计方案流动压力损失计算结果

    Table  2   Calculated flow pressure loss in four design schemes of the flow passage converter

    设计方案进口压力/kPa出口压力/kPa总压损失系数,%
    原始设计10 0009 853.81.462
    优化方案110 0009 880.81.192
    优化方案210 0009 886.01.140
    优化方案310 0009 959.30.407
    下载: 导出CSV

    表  3   流道转换器4种设计方案的流动压力损失试验结果

    Table  3   Experimental flow pressure loss in four design schemes for the flow passage converter

    设计方案进口压力/kPa出口压力/kPa总压损失系数,%
    原始设计520.0512.01.538
    优化方案1585.0577.71.248
    优化方案2514.0508.01.167
    优化方案3477.0475.00.419
    下载: 导出CSV
  • [1] 侯亮. 2020国外测井技术进展与趋势[J]. 世界石油工业,2020,27(6):49–54.

    HOU Liang. Development and trend of foreign well logging technologies in 2020[J]. World Petroleum Industry, 2020, 27(6): 49–54.

    [2] 布志虹,任干能,陈乐. 随钻测井技术[J]. 断块油气田,2001,8(4):22–24. doi: 10.3969/j.issn.1005-8907.2001.04.007

    BU Zhihong, REN Ganneng, CHEN Le. Logging while drilling technology[J]. Fault-Block Oil & Gas Field, 2001, 8(4): 22–24. doi: 10.3969/j.issn.1005-8907.2001.04.007

    [3] 涂春赵,张国强,刘如明,等. 随钻方位电阻率测井仪在渤海油田的应用与探索[J]. 石油管材与仪器,2020,6(6):70–73.

    TU Chunzhao, ZHANG Guoqiang, LIU Ruming, et al. Application of directional wave propagation resistivity tool in Bohai Oilfield[J]. Petroleum Tubular Goods & Instruments, 2020, 6(6): 70–73.

    [4] 林楠,王敬萌,亢武臣,等. 最新随钻声波测井仪的技术性能与应用实例[J]. 石油钻探技术,2006,34(4):73–76. doi: 10.3969/j.issn.1001-0890.2006.04.022

    LIN Nan, WANG Jingmeng, KANG Wuchen, et al. Technical performances and applications of the newly developed sonic LWD tools[J]. Petroleum Drilling Techniques, 2006, 34(4): 73–76. doi: 10.3969/j.issn.1001-0890.2006.04.022

    [5] 朱祖扬,倪卫宁,张卫,等. 随钻一体化测井仪平台开发[J]. 石油钻探技术,2019,47(1):118–126. doi: 10.11911/syztjs.2019016

    ZHU Zuyang, NI Weining, ZHANG Wei, et al. The development of an integrated logging instrument platform while drilling[J]. Petroleum Drilling Techniques, 2019, 47(1): 118–126. doi: 10.11911/syztjs.2019016

    [6] 路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术,2019,47(3):148–155. doi: 10.11911/syztjs.2019060

    LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060

    [7] 李亨,刘迪仁,倪小威,等. 钻井液侵入情况下随钻电磁波电阻率测井的响应[J]. 断块油气田,2019,26(5):675–680.

    LI Heng, LIU Diren, NI Xiaowei, et al. Logging responses of electromagnetic wave resistivity while drilling with drilling fluid intrusion[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 675–680.

    [8] 李安宗,秦泓江,王珺,等. 随钻可控源中子测井仪器研究[J]. 石油钻采工艺,2011,33(5):105–109. doi: 10.3969/j.issn.1000-7393.2011.05.028

    LI Anzong, QIN Hongjiang, WANG Jun, et al. Study on neutron logging while drilling tool controllable neutron source[J]. Oil Drilling & Production Technology, 2011, 33(5): 105–109. doi: 10.3969/j.issn.1000-7393.2011.05.028

    [9] 王智明,王红亮,邓晓清,等. 随钻仪器机电接口标准化推进产品产业化[J]. 石油工业技术监督,2017,33(12):19–22. doi: 10.3969/j.issn.1004-1346.2017.12.005

    WANG Zhiming, WANG Hongliang, DENG Xiaoqing, et al. Standardization of mechanical and electrical interfaces of LWD instruments to pomote product industrialization[J]. Technical Supervision in Petroleum Industry, 2017, 33(12): 19–22. doi: 10.3969/j.issn.1004-1346.2017.12.005

    [10] 李杰,罗瑜林,刘西恩. 随钻用流道转换接头损伤规律研究及改进方法[J]. 石油矿场机械,2018,47(3):14–18. doi: 10.3969/j.issn.1001-3482.2018.03.003

    LI Jie, LUO Yulin, LIU Xien. Research on the damage revolution law of flow channels crossover subs while drilling and the development method[J]. Oil Field Equipment, 2018, 47(3): 14–18. doi: 10.3969/j.issn.1001-3482.2018.03.003

    [11] 杨顺辉,陶兴华,殷琨,等. 计算流体动力学在冲击器设计和模拟中的应用[J]. 石油钻探技术,2008,36(5):40–42. doi: 10.3969/j.issn.1001-0890.2008.05.010

    YANG Shunhui, TAO Xinghua, YIN Kun, et al. Application of CFD on the design and simulation of hydro-efflux hammer[J]. Petroleum Drilling Techniques, 2008, 36(5): 40–42. doi: 10.3969/j.issn.1001-0890.2008.05.010

    [12] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 4–17.

    WANG Fujun. Principle and application of CFD software for computational fluid dynamics analysis[M]. Beijing: Tsinghua Univer-sity Press, 2004: 4–17.

    [13] 药晓江,董景新,尚捷,等. 随钻测井用涡轮发电机叶轮组水力性能分析[J]. 石油机械,2015,43(6):6–10, 75.

    YAO Xiaojiang, DONG Jingxin, SHANG Jie, et al. Hydraulic performance analysis of turbine impeller assembly for LWD[J]. China Petroleum Machinery, 2015, 43(6): 6–10, 75.

    [14] 孔珑. 可压缩流体动力学[M]. 北京: 水利电力出版社, 1991: 3–18.

    KONG Long. Compressible fluid dynamics[M]. Beijing: Water Conservancy and Electric Power Press, 1991: 3–18.

    [15] 张永学,李振林. 流体机械内部流动数值模拟方法综述[J]. 流体机械,2006,34(7):34–38. doi: 10.3969/j.issn.1005-0329.2006.07.009

    ZHANG Yongxue, LI Zhenlin. Summary of numerical simulation methods for flow in fluid machinery[J]. Fluid Machinery, 2006, 34(7): 34–38. doi: 10.3969/j.issn.1005-0329.2006.07.009

图(8)  /  表(3)
计量
  • 文章访问数:  712
  • HTML全文浏览量:  254
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-20
  • 修回日期:  2021-07-14
  • 网络出版日期:  2021-05-13
  • 刊出日期:  2021-10-17

目录

    /

    返回文章
    返回