随钻地震技术在莺歌海盆地高温高压地层钻井中的应用

高永德, 刘鹏, 杜超, 陈鸣, 陈艳艳

高永德, 刘鹏, 杜超, 陈鸣, 陈艳艳. 随钻地震技术在莺歌海盆地高温高压地层钻井中的应用[J]. 石油钻探技术, 2020, 48(4): 63-71. DOI: 10.11911/syztjs.2020049
引用本文: 高永德, 刘鹏, 杜超, 陈鸣, 陈艳艳. 随钻地震技术在莺歌海盆地高温高压地层钻井中的应用[J]. 石油钻探技术, 2020, 48(4): 63-71. DOI: 10.11911/syztjs.2020049
GAO Yongde, LIU Peng, DU Chao, CHEN Ming, CHEN Yanyan. The Application of Seismic while Drilling in High Temperature, High Pressure Reservoirs of the Yinggehai Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 63-71. DOI: 10.11911/syztjs.2020049
Citation: GAO Yongde, LIU Peng, DU Chao, CHEN Ming, CHEN Yanyan. The Application of Seismic while Drilling in High Temperature, High Pressure Reservoirs of the Yinggehai Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 63-71. DOI: 10.11911/syztjs.2020049

随钻地震技术在莺歌海盆地高温高压地层钻井中的应用

基金项目: 国家科技重大专项课题“莺琼盆地高温高压天然气富集规律与勘探开发关键技术(三期)”(编号:2016ZX05024-005)资助
详细信息
    作者简介:

    高永德(1978—),男,山东沂南人,2001年毕业于江汉石油学院应用地球物理专业,2008年获长江大学地球探测与信息技术专业硕士学位,高级工程师,主要从事地球物理测井相关的管理与技术工作。E-mail:gaoyd1@cnooc.com.cn

  • 中图分类号: TE27+1

The Application of Seismic while Drilling in High Temperature, High Pressure Reservoirs of the Yinggehai Basin

  • 摘要:

    南海莺歌海盆地高温高压地层的钻井安全风险较高,为降低钻井风险,需要准确预测高压地层的压力和深度。为此,在预探井DF-X1井钻井过程中研究应用了随钻地震技术,利用随钻地震数据获得时深关系和地层层速度,实时更新钻头在地震剖面中的位置,确定钻头前方高压储层的深度和地层压力系数。在DF-X1井实钻过程中,应用随钻地震技术准确预测了高压储层A1砂体的地层孔隙压力系数、破裂压力系数和深度,高压储层A1砂体的预测深度与实钻深度相差仅6.00 m,确保了ϕ244.5 mm套管成功下到高压储层上部的泥岩中,确保了ϕ212.7 mm 井段的安全压力窗口;A1砂体孔隙压力系数和破裂压力系数的预测精度分别达到3.0%和1.0%,确保了该探井的顺利完钻。研究结果表明,随钻地震技术可以准确预测地层压力和高压储层深度,能有效降低钻井风险,提高作业效率。

    Abstract:

    There are high temperature, high pressure (HTHP) formations in the Yinggehai Basin in the South China Sea, and they are considered high-risk for safety when penetrating the HTHP formations. In order to reduce the drilling risk, it is necessary to accurately predict the pressures and at each formation depth. For this reason, the seismic while drilling technology was applied in the pre-exploration Well DF-X1. The technology uses seismic data while drilling to obtain the time-depth relationship and the formation velocity, and it updates the bit position on the seismic profile in real time, and thus it determines the high pressure reservoir depth and formation pressure coefficient in front of the bit. During the actual drilling of Well DF-X1, the seismic while drilling technology was used to accurately predict the pore pressure coefficient, fracture pressure coefficient and depth of the high pressure reservoir A1 sand body. The predicted depth error of A1 sand body was only 6.00 m with the actually drilled depth, which ensured that the ϕ244.5 mm casing was run into the mudstone above the high pressure reservoir. By using seismic while drilling, the prediction accuracy of A1 sand body pore pressure coefficient achieved 3.0%, and the accuracy of formation fracture pressure coefficient up to 1.0%. Based on this, the drilling fluid density of the completion section was optimized to avoid the gas cut and lost circulation, kept the successful drilling of the well. The research results showed that the seismic while drilling technology could accurately predict the formation pressure along with the depth of the targeted high pressure reservoir, thus effectively reduce drilling risk and improving operation efficiency.

  • 图  1   随钻地震数据采集示意

    Figure  1.   Schematic of seismic data acquisition while drilling

    图  2   随钻地震数据处理流程

    Figure  2.   Process flow of seismic data while drilling

    图  3   地层压力监测工作流程

    Figure  3.   Workflow of formation pressure monitoring

    图  4   DF-X1井过井地面地震剖面

    Figure  4.   Surface seismic profile of Well DF-X1

    图  5   DF-X1井随钻地震实时数据

    Figure  5.   Real-time seismic data while drilling in Well DF-X1

    图  6   随钻地震实时时深关系与钻前及邻井时深关系对比

    Figure  6.   Comparison of the real-time time-depth relationship among seismic while drilling, the pre-drilling and that in adjacent wells

    图  7   第三次随钻地震数据实时处理结果

    Figure  7.   Real-time processing results of the seismic data while drilling in the third run

    图  8   随钻地震波阻抗反演结果

    Figure  8.   Results of seismic wave impedance inversion while drilling

    图  9   随钻地震监测地层压力监测结果

    Figure  9.   Formation pressure monitoring results of seismic while drilling

    图  10   随钻地震储层段地层压力监测结果与实测结果对比

    Figure  10.   Comparison of the formation pressure monitoring results of seismic while drilling and that of the actually measured in the reservoir section

    表  1   DF-X1井随钻地震各趟采集参数

    Table  1   Parameters acquisition of each run in Well DF-X1 by seismic while drilling

    采集次数采集道数起始深度/m结束深度/m井筒类型道间距/m
    1222 767.063 067.20套管14.40
    2303 081.173 381.12裸眼14.40
    3443 369.603 771.22裸眼14.40
    下载: 导出CSV

    表  2   随钻地震地层深度实时预测结果

    Table  2   Real-time formation depth prediction results of seismic while drilling

    地震层位随钻地震预测深度/m实钻深度/m误差/m
    T303 158.003 145.00+13.00
    T30_C3 461.003 466.00–5.00
    T30_E3 584.003 580.00+4.00
    T30_H3 641.003 642.00–1.00
    T313 787.003 784.00+3.00
    A1砂顶3 825.003 819.00+6.00
    下载: 导出CSV
  • [1] 郝芳,董伟良,邹华耀,等. 莺歌海盆地汇聚型超压流体流动及天然气晚期快速成藏[J]. 石油学报, 2003, 24(6): 7–12. doi: 10.3321/j.issn:0253-2697.2003.06.002

    HAO Fang, DONG Weiliang, ZOU Huayao, et al. Overpressure fluid flow and rapid accumulation of natural gas in Yinggehai Basin[J]. Acta Petrolei Sinica, 2003, 24(6): 7–12. doi: 10.3321/j.issn:0253-2697.2003.06.002

    [2] 裴健翔,于俊峰,王立锋,等. 莺歌海盆地中深层天然气勘探的关键问题及对策[J]. 石油学报, 2011, 32(4): 573–579. doi: 10.7623/syxb201104003

    PEI Jianxiang, YU Junfeng, WANG Lifeng, et al. Key challenges and strategies for the success of natural gas exploration in mid-deep strata of the Yinggehai Basin[J]. Acta Petrolei Sinica, 2011, 32(4): 573–579. doi: 10.7623/syxb201104003

    [3] 谢玉洪. 莺歌海高温超压盆地压力预测模式及成藏新认识[J]. 天然气工业, 2011, 31(12): 21–25. doi: 10.3787/j.issn.1000-0976.2011.12.004

    XIE Yuhong. Models of pressure prediction and new understandings of hydrocarbon accumulation in the Yinggehai Basin with high temperature and super high pressure[J]. Natural Gas Industry, 2011, 31(12): 21–25. doi: 10.3787/j.issn.1000-0976.2011.12.004

    [4] 谢玉洪,张迎朝,李绪深,等. 莺歌海盆地高温超压气藏控藏要素与成藏模式[J]. 石油学报, 2012, 33(4): 601–609. doi: 10.7623/syxb201204009

    XIE Yuhong, ZHANG Yingchao, LI Xushen, et al. Main controlling factors and formation models of natural gas reservoirs with high-temperature and overpressure in Yinggehai Basin[J]. Acta Petrolei Sinica, 2012, 33(4): 601–609. doi: 10.7623/syxb201204009

    [5] 郝芳,刘建章,邹华耀,等. 莺歌海—琼东南盆地超压层系油气聚散机理浅析[J]. 地学前缘, 2015, 22(1): 169–180.

    HAO Fang, LIU Jianzhang, ZOU Huayao, et al. Mechanisms of natural gas accumulation and leakage in the overpressured sequences in the Yinggehai and Qiongdongnan Basins, offshore South China Sea[J]. Earth Science Frontiers, 2015, 22(1): 169–180.

    [6] 张伙兰,裴健翔,张迎朝,等. 莺歌海盆地东方区中深层黄流组超压储集层特征[J]. 石油勘探与开发, 2013, 40(3): 284–293. doi: 10.11698/PED.2013.03.04

    ZHANG Huolan, PEI Jianxiang, ZHANG Yingchao, et al. Overpressure reservoirs in the mid-deep Huangliu Formation of the Dongfang Area, Yinggehai Basin, South China Sea[J]. Petroleum Exploration and Development, 2013, 40(3): 284–293. doi: 10.11698/PED.2013.03.04

    [7] 杨红君,蔡军. 基于VSP的孔隙压力预测方法在莺歌海盆地的应用[J]. 中国海上油气, 2014, 26(4): 20–24.

    YANG Hongjun, CAI Jun. Applying a method to predict pore pressure based on VSP in Yinggehai Basin[J]. China Offshore Oil and Gas, 2014, 26(4): 20–24.

    [8]

    CAO Shunhua, XIE Yuhong, LIU Chang, et al. Multistage approach on pore pressure prediction: a case study in South China Sea[R]. SPE 103856, 2006.

    [9]

    XIE Yuhong, CAI Jun, LING Xiazhen, et al. Ahead of bit pore pressure prediction using VSP: a case study in South China Sea[R]. SPE 130551, 2010.

    [10]

    YANG H, CAI J, GUO S, et al. Predicting drilling target ahead of bit using VSP lookahead technique that help mitigate drilling risk in over pressure zone, a case example from South China Sea[R]. SPE 1653838, 2013.

    [11]

    CAI J, CHENG Y F, CHEN M, et al. Deepwater exploration breakthrough with LWD technology in South China Sea[R]. SPE 176317, 2015.

    [12] 蔡军,李文拓,刘鹏,等. 琼东南盆地深水区探井随钻压力监测技术与应用[J]. 天然气工业, 2015, 35(10): 99–105. doi: 10.3787/j.issn.1000-0976.2015.10.013

    CAI Jun, LI Wentuo, LIU Peng, et al. Research and application of while-drilling pressure-monitoring technology in exploration wells of deep water area, Qiongdongnan Basin[J]. Natural Gas Industry, 2015, 35(10): 99–105. doi: 10.3787/j.issn.1000-0976.2015.10.013

    [13]

    GAO Yongde, CHEN Ming, DU Chao, et al. Integrated real-time pressure monitoring enabled the success of drilling a HTHP offshore well: a casing study in Ledong Area of Yinggehai Basin, South China Sea[R]. IPTC 19313, 2019.

    [14]

    GOUVEIA W P, SCALES J A. Bayesian seismic waveform inversion: parameter estimation and uncertainty analysis[J]. Journal of Geophysical Research (Solid Earth), 1998, 103(B2): 2759–2779. doi: 10.1029/97JB02933

    [15]

    CONSTANT D W, BOURGOYNE A T Jr. Fracture-gradient prediction for offshore wells[J]. SPE Drilling Engineering, 1988, 3(2): 136–140. doi: 10.2118/15105-PA

    [16]

    DUTTA N C. Geopressure prediction using seismic data: current status and the road ahead[J]. Geophysics, 2002, 67(6): 2012–2041. doi: 10.1190/1.1527101

    [17]

    EATON B A. Fracture gradient prediction and its application in oilfield operations[J]. Journal of Petroleum Technology, 1969, 21(10): 1353–1360. doi: 10.2118/2163-PA

    [18]

    FERTl W H. Abnormal formation pressure, implication to exploration, drilling and production of oil and gas resources[M]. Amsterdam: Elsevier, 1976: 392.

    [19]

    ZAMORA M. New method predicts gradient fracture[J]. Petroleum Engineer International, 1989, 61(9): 38–47.

    [20]

    EATON B A. The equation for geopressure prediction from well logs[R]. SPE 5544, 1975.

    [21]

    FAN Xiangyu, GONG Ming, ZHANG Qiangui, et al. Prediction of the horizontal stress of the tight sandstone formation in eastern Sulige of China[J]. Journal of Petroleum Science and Engineering, 2013, 113(1): 72–80.

    [22]

    EATON B A, EATON T L. Fracture gradient prediction for the new generation[J]. World Oil, 1997, 218(10): 93–100.

  • 期刊类型引用(5)

    1. 刘长龙,赵鹏,方月月,吕鹏,阚亮,苏坡. 基于二次交联的有机复合交联调剖体系研究与应用. 当代化工. 2023(10): 2352-2356 . 百度学术
    2. 刘大为,乔梦月. 复合型交联剂调剖溶液性能评价. 化学工程师. 2018(08): 75-77+74 . 百度学术
    3. 梁守成,吕鑫,陈冠中,李强,李丽霞. 一种新型二次交联凝胶体系的合成与应用. 科学技术与工程. 2017(04): 189-193+202 . 百度学术
    4. 魏开鹏,杨欢,斯容,方群,刘学全. 红河油田水平井置胶成坝技术. 石油钻探技术. 2017(02): 81-86 . 本站查看
    5. 顾宏,汪小平,杨开. 海外河油田注水提高采收率关键技术试验与应用. 化学工程与装备. 2016(10): 131-133 . 百度学术

    其他类型引用(6)

图(10)  /  表(2)
计量
  • 文章访问数:  1375
  • HTML全文浏览量:  575
  • PDF下载量:  103
  • 被引次数: 11
出版历程
  • 收稿日期:  2019-07-25
  • 修回日期:  2020-04-08
  • 网络出版日期:  2020-04-19
  • 刊出日期:  2020-06-30

目录

    /

    返回文章
    返回