青海油田尕斯N1–N21超高盐油藏复合驱提高采收率技术

贾志伟, 程长坤, 朱秀雨, 濮兰天, 韩宇, 扈福堂

贾志伟, 程长坤, 朱秀雨, 濮兰天, 韩宇, 扈福堂. 青海油田尕斯N1–N21超高盐油藏复合驱提高采收率技术[J]. 石油钻探技术, 2021, 49(5): 81-87. DOI: 10.11911/syztjs.2021121
引用本文: 贾志伟, 程长坤, 朱秀雨, 濮兰天, 韩宇, 扈福堂. 青海油田尕斯N1–N21超高盐油藏复合驱提高采收率技术[J]. 石油钻探技术, 2021, 49(5): 81-87. DOI: 10.11911/syztjs.2021121
JIA Zhiwei, CHENG Changkun, ZHU Xiuyu, PU Lantian, HAN Yu, HU Futang. Oil Recovery Enhancement by Composite Flooding Technology for Gasi N1–N21 Ultra-High-Salinity Reservoir in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 81-87. DOI: 10.11911/syztjs.2021121
Citation: JIA Zhiwei, CHENG Changkun, ZHU Xiuyu, PU Lantian, HAN Yu, HU Futang. Oil Recovery Enhancement by Composite Flooding Technology for Gasi N1–N21 Ultra-High-Salinity Reservoir in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 81-87. DOI: 10.11911/syztjs.2021121

青海油田尕斯N1–N21超高盐油藏复合驱提高采收率技术

基金项目: 中国石油重大科技专项“柴达木盆地老油区精细调整及提高采收率关键技术研究”(编号:2016E-0104)部分研究内容
详细信息
    作者简介:

    贾志伟(1985—),男,山东德州人,2007年毕业于西南石油大学石油工程专业,2014年获西南石油大学石油与天然气工程专业硕士学位,工程师,主要从事提高采收率方面的研究工作。E-mail:81703438@qq.com。

  • 中图分类号: TE357.46+3

Oil Recovery Enhancement by Composite Flooding Technology for Gasi N1–N21 Ultra-High-Salinity Reservoir in Qinghai Oilfield

  • 摘要: 青海油田尕斯N1–N21油藏的地层水矿化度和钙镁离子含量超高,进行凝胶与表面活性剂复合驱,常规凝胶易脱水破胶,长期稳定性差,同时常规表面活性剂易与地层水中的钙镁离子发生反应产生沉淀。针对前一问题,合成了适用于尕斯N1–N21油藏的抗高盐有机凝胶,配方为0.3%~0.4%聚合物+0.2%~0.3%交联剂+0.1%~0.2%稳定剂,该体系在68 ℃条件下初凝时间大于70 h,成胶后凝胶黏度大于1.0×104 mPa∙s;优选了抗高盐表面活性剂QH-1,评价了界面张力和驱油效果,发现质量分数0.4%的QH-1溶液可提高采收率18.72%。室内试验结果表明,交替注入抗高盐有机凝胶和QH-1能有效遏制水的无效循环,提高中低渗区域的驱油效率,优化的“凝胶+QH-1”复合驱可提高采收率27.6%以上。该复合驱在尕斯N1–N21油藏9口注水井进行了应用,应用后对应油井的平均含水率由80%降至70%,增产油量2.41×104 t。研究结果表明,“凝胶+QH-1”复合驱提高采收率技术对青海油田尕斯N1–N21超高盐油藏增油降水具有很好的效果,具有推广价值。
    Abstract: The salinity and the content of calcium and magnesium ions are ultra-high in the formation water of Gasi N1–N21 reservoir in Qinghai Oilfield. While using gel and surfactant composite flooding, conventional gels are prone to dehydrate and break, showing poor long-term stability. Meanwhile, conventional surfactants are easy to react with the calcium and magnesium ions in formation water to cause precipitation. In view of this, a high-salinity-resistant organogel suitable for Gasi N1–N21 reservoir was developed, which consisted of polymer (0.3%–0.4%) + crosslinking agent (0.2%–0.3%) + stabilizer (0.1%–0.2%). The initial setting time of the system was longer than 70 h at 68 ℃, and the viscosity after gelling was greater than 1.0×104 mPa·s. What's more, a high-salinity-resistant surfactant QH-1 was optimized, and the interfacial tension and oil displacement effect were evaluated, witha finding that the QH-1 solution with a mass fraction of 0.4% could enhance the oil recovery by 18.72%. The laboratory test results indicated that alternate injection of the high-salinity-resistant organogel and QH-1 could effectively curb the ineffective water circulation and improve the oil displacement efficiency in the low and medium permeability areas. Notably, the optimized “gel + QH-1” composite flooding was capable of enhancing oil recovery by more than 27.6%. The composite flooding was applied to 9 water-injection wells in Gasi N1–N21 reservoir. As a result, the average water cut of these oil wells decreased from 80% to 70%, and the oil production increased by 2.41 × 104 t. The research results show that the oil recovery enhancement by “gel + QH-1” composite flooding is effective in enhancing oil production and decreasing water cut in Gasi N1–N21 ultra-high-salinity reservoir, so it is worthy of promotion and application.
  • 图  1   抗高盐有机凝胶中聚合物的合成反应式

    Figure  1.   Synthesis reaction formula for polymer in high-salinity-resistant organogels

    图  2   油水界面张力随表面活性剂质量分数变化的曲线

    Figure  2.   Change of oil-water interfacial tension with the mass fraction of surfactants

    图  3   抗高盐有机凝胶注入压力与注入量的关系曲线

    Figure  3.   Relationship between injection pressure and injection volume of high-salinity-resistant organogels

    图  4   实施区块生产曲线

    Figure  4.   Production curve of the test block

    图  5   跃7540更2向井与周边油井的注采连通关系

    Figure  5.   Injection and production connections among Well Y7540G2 and surrounding oil wells

    表  1   抗高盐有机凝胶68 ℃下的性能

    Table  1   Performance of high-salinity-resistant organogels at 68 ℃

    聚合物
    质量分数,%
    交联剂
    质量分数,%
    稳定剂
    质量分数,%
    表观黏度/
    (mPa∙s)
    初凝时间/h
    0.20.10.051 500180
    0.20.102 500150
    0.30.203 200130
    0.30.10.054 000125
    0.20.108 200100
    0.30.2010 300 80
    0.40.10.058 400105
    0.20.1011 200 90
    0.30.2013 000 75
    下载: 导出CSV

    表  2   抗高盐有机凝胶封堵性能试验结果

    Table  2   Test results of plugging performance of high-salinity-resistant organogels

    凝胶渗透率/mD压力梯度/(MPa∙m–1
    注入凝胶水驱
    1 3913.203.84
    1 050 0.682.86
    5 103 0.304.14
    2 4204.485.02
    1 120 1.206.67
    5 260 0.488.31
    下载: 导出CSV

    表  3   抗高盐有机凝胶转向效果试验结果

    Table  3   Test results of steering effect of high-salinity-resistant organogels

    凝胶渗透率/mD含油饱和度,%采收率,%
    水驱注凝胶
    135662.8 5.621.7
    98766.532.257.0
    4 981 71.245.155.7
    239863.6 6.123.0
    1 056 67.133.159.4
    5 138 73.448.359.6
    下载: 导出CSV

    表  4   耐高盐表面活性剂QH-1岩心驱油的试验结果

    Table  4   Core displacement test results of high-salinity-resistant surfactant QH-1

    岩心渗透率/
    mD
    QH-1质量
    分数,%
    水驱采收
    率,%
    QH-1驱采
    收率,%
    3650.125.50 6.12
    3420.227.6812.47
    3810.326.7215.11
    3570.425.5518.72
    下载: 导出CSV

    表  5   “凝胶+QH-1”复合驱岩心驱替试验结果

    Table  5   Core displacement test results of "Gel +QH-1" composite flooding

    凝胶与QH-1组合形式渗透率/mD含油饱和度,%采收率,%
    水驱“凝胶+ QH-1”复合驱
    0.10 PV凝胶+0.20 PV表面活性剂46364.330.558.1
    1 635 67.536.566.8
    0.10 PV凝胶0.25 PV表面活性剂56862.129.759.2
    1 890 70.437.568.7
    0.10 PV凝胶+0.30 PV表面活性剂32461.328.561.2
    1 500 72.135.269.5
     注:1)凝胶配方为0.4%耐高盐聚合物+0.2%交联剂+0.1%稳定剂;表面活性剂为0.3%QH-1。
    下载: 导出CSV
  • [1] 梁丹,吕鑫,蒋珊珊,等. 渤海油田分级组合深部调剖技术[J]. 石油钻探技术,2015,43(2):104–109.

    LIANG Dan, LYU Xin, JIANG Shanshan, et al. The technology of classified combination of deep profile control in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(2): 104–109.

    [2] 张贵清,孙磊,夏烨,等. 耐贮存改性酚醛树脂交联剂的合成及性能评价[J]. 石油钻探技术,2017,45(6):99–104.

    ZHANG Guiqing, SUN Lei, XIA Ye, et al. Synthesis and property evaluation of storable modified phenolic resin cross-linking agent[J]. Petroleum Drilling Techniques, 2017, 45(6): 99–104.

    [3] 付国强,王克亮. 水驱后凝胶与表活剂交替注入驱油效果[J]. 当代化工,2016,45(3):495–497. doi: 10.3969/j.issn.1671-0460.2016.03.020

    FU Guoqiang, WANG Keliang. Oil displacement effect of alternative injection of gel and surfactant after water flooding[J]. Contemporary Chemical Industry, 2016, 45(3): 495–497. doi: 10.3969/j.issn.1671-0460.2016.03.020

    [4] 石延辉,王帅,张绍辉. 调剖+表活剂驱油综合治理多裂缝非均质复杂油藏[J]. 石油工业技术监督,2018,34(6):40–42. doi: 10.3969/j.issn.1004-1346.2018.06.012

    SHI Yanhui, WANG Shuai, ZHANG Shaohui. Comprehensive control of multi-fractured heterogeneous complex reservoirs by profile control and surfactant flooding[J]. Technology Supervision in Petroleum Industry, 2018, 34(6): 40–42. doi: 10.3969/j.issn.1004-1346.2018.06.012

    [5] 白宝君,周佳,印鸣飞. 聚丙烯酰胺类聚合物凝胶改善水驱波及技术现状及展望[J]. 石油勘探与开发,2015,42(4):481–487.

    BAI Baojun, ZHOU Jia, YIN Mingfei. A comprehensive review of polyacrylamide polymer gels for conformance control[J]. Petroleum Exloration and Development, 2015, 42(4): 481–487.

    [6] 张兵,蒲春生,于浩然,等. 裂缝性油藏多段塞凝胶调剖技术研究与应用[J]. 油田化学,2016,33(1):46–50.

    ZHANG Bing, PU Chunsheng, YU Haoran, et al. Research and application of multi-slug gel profile control technology in fractured reservoirs[J]. Oilfield Chemistry, 2016, 33(1): 46–50.

    [7] 宋官龙. 适合低渗高盐油藏的表面活性剂复配体系及性能研究[J]. 油田化学,2016,33(1):99–102.

    SONG Guanlong. Performance evaluation of mixed surfactants for EOR in high salinity and low permeability reservoirs[J]. Oilfield Chemistry, 2016, 33(1): 99–102.

    [8] 陈斌,曹小华,周亮,等. 适用于高温高盐低渗砂岩油藏的表面活性剂驱油体系[J]. 钻采工艺,2021,44(3):87–91.

    CHEN Bin, CAO Xiaohua, ZHOU Liang, et al. Surfactant flooding system for high temperature and high salinity of low permeability sandstone reservoirs[J]. Drilling & Production Technology, 2021, 44(3): 87–91.

    [9] 于萌,铁磊磊,李翔,等. 海上油田剖面调整用分散共聚物颗粒体系的研制[J]. 石油钻探技术,2020,48(2):118–122. doi: 10.11911/syztjs.2020019

    YU Meng, TIE Leilei, LI Xiang, et al. Development of dispersed copolymer particle system for profile control in offshore oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 118–122. doi: 10.11911/syztjs.2020019

    [10] 卢祥国,王树霞,王荣建,等. 深部液流转向剂与油藏适应性研究:以大庆喇嘛甸油田为例[J]. 石油勘探与开发,2011,38(5):576–582. doi: 10.1016/S1876-3804(11)60056-6

    LU Xiangguo, WANG Shuxia, WANG Rongjian, et al. Adaptability of a deep profile control agent to reservoirs: taking the Lamadian Oilfield in Daqing as an example[J]. Petroleum Exploration and Development, 2011, 38(5): 576–582. doi: 10.1016/S1876-3804(11)60056-6

    [11] 王洋,韩国彤,葛际江,等. 表面活性剂提高碳酸盐岩油藏采收率进展[J]. 油田化学,2015,32(2):301–306,316.

    WANG Yang, HAN Guotong, GE Jijiang, et al. Research progress of enhanced oil recovery with surfactants in carbonate reservoirs[J]. Oilfield Chemistry, 2015, 32(2): 301–306,316.

    [12] 潘斌林. APEC(Na)降低油水界面张力影响因素研究[J]. 油田化学,2014,31(1):95–98.

    PAN Binlin. Influencing factors of APEC(Na) on reducing interfacial tension[J]. Oilfield Chemistry, 2014, 31(1): 95–98.

    [13]

    LIU Yifei, DAI Caili, WANG Kai, et al. New insights into the hydroquinone (HQ)-hexamethylenetetramine (HMTA) gel system for water shut-off treatment in high temperature reservoirs[J]. Journal of Industrial and Engineering Chemistry, 2016, 35: 20–28. doi: 10.1016/j.jiec.2015.09.032

    [14] 张绍东,付继彤,姚军,等. 重质石油磺酸盐化学驱方案设计方法研究及应用[J]. 石油大学学报(自然科学版),2002,26(4):48–50.

    ZHANG Shaodong, FU Jitong, YAO Jun, et al. Design and application of chemical displacement pilot with weighted petroleum sulfonate[J]. Journal of China University of Petroleum(Edition of Natural Science), 2002, 26(4): 48–50.

    [15] 张永强,赫文秀. 阳离子碳氟与阴离子碳氢表面活性剂复配体系的性质[J]. 精细石油化工,2014,31(3):63–67. doi: 10.3969/j.issn.1003-9384.2014.03.015

    ZHANG Yongqiang, HE Wenxiu. Properties of mixed system of fluorocarbon cationic surfactant and hydrocarbon anionic surfac-tant[J]. Speciality Petrochemicals, 2014, 31(3): 63–67. doi: 10.3969/j.issn.1003-9384.2014.03.015

图(5)  /  表(5)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  278
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-13
  • 修回日期:  2021-08-17
  • 网络出版日期:  2021-09-15
  • 刊出日期:  2021-10-17

目录

    /

    返回文章
    返回