Analyzing and Understanding the Influencing Factors of CO2 Flooding in the Subei Complex Fault Block Reservoirs
-
摘要:
苏北盆地复杂断块油藏CO2驱油效果差异较大,为制定提高CO2驱油效果的有效措施,分析了其主要影响因素。对苏北9个CO2驱区块的相关数据进行了统计,分析了井型、压裂情况、注气前油井产油量、注采比和注气方式等对CO2驱油效果的影响。分析结果为:直井的开发效果好于水平井,非压裂井的效果好于压裂井,油井初产量越高则CO2驱油效果越好,最佳注采比为2.5左右,而注CO2方式对开发效果影响不大。研究结果表明,低渗透油藏采用的井型、油井是否压裂、注气前油井产油量是影响CO2驱油效果的主要因素,在研究制定提高苏北盆地复杂断块油藏CO2驱油效果的技术措施时,应充分考虑这些主要影响因素。
Abstract:The performance of CO2 flooding in the complex fault block reservoirs of the Subei Basin varies greatly. In order to find effective measures to improve the development of these unique fault-block reservoirs, the main influencing factors were analyzed. Based on the data from 9 CO2 flooding blocks in north Jiangsu, the influences of well type, fracturing conditions, initial production before gas injection, the injection-production ratio and the gas injection method on CO2 flooding effects were analyzed. The analysis results show that the development effect of vertical wells is better than that of horizontal wells, and it is better for non-fractured wells than fractured. The higher the initial production of the well, the better the CO2 flooding effect. The optimal injection-production ratio is around 2.5, while CO2 injection methods play an insignificant role in the development effect. The results show that those factors, such as low permeability reservoir well type and the necessity of reservoir stimulation, are the main factors influencing CO2 flooding. Those issues need to be fully considered in improving the CO2 flooding effect in the complex fault block reservoirs in the Subei Basin.
-
Keywords:
- CO2 flooding /
- well type /
- oil saturation /
- injection-production ratio /
- fault block reservoir /
- Subei Basin
-
-
表 1 苏北盆地9个注CO2区块油藏基本参数
Table 1 Basic reservoir parameters of 9 CO2 flooding blocks in the Subei Basin
区块
名称层位 油藏
类型油藏中深/
m油藏有效
厚度/m原始地层
压力/MPa地层温度/
℃孔隙
度,%渗透率/
mD地下原油密度/
(kg·L–1)地下原油黏度/
(mPa·s)CS 泰州组 低渗透 2 860.00 38.80 32.7 110.0 14.1 46.0 0.754 3 19.85 CS 阜三段 低渗透 2 945.00 9.20 30.8 104.0 19.0 12.9 0.799 0 5.14 TN 阜三段 低渗透 2 521.80 14.50 26.3 86.7 20.1 47.0 0.788 0 5.67 JN 阜二段 低渗透 2 160.00 6.90 22.5 74.3 13.0 17.0 0.816 9 8.40 ZJD 阜三段 特低渗透 3 150.00 5.10 40.8 105.9 17.8 5.6 0.803 4 3.79 QT 阜三段 特低渗透 3 056.00 5.80 30.9 101.2 17.7 4.0 0.803 4 3.78 HL 阜三段 中高渗 2 364.60 2.90 24.6 81.3 26.7 93.7 0.821 0 7.86 ZC 垛一段 中高渗 1 649.70 25.40 16.0 75.6 27.1 1 394.0 0.866 9 26.35 XB 垛一段 普通稠油 1 948.00 7.40 22.2 81.0 28.4 120.0 0.888 9 5 335.87 表 2 注CO2区块直井见气见效情况
Table 2 Flooding effects and gas production in vertical wells in a CO2 flooding blocks
区块及层位 井数/口 见效井
占比,%不见效井
占比,%油井 见气不
见效不见气
不见效见气
见效CN泰州组 14 3 1 10 71 29 CN阜一段 1 0 0 1 100 0 CZ阜三段 11 0 3 8 73 27 TN阜三段 9 1 2 6 67 33 HL阜三段 3 1 2 0 0 100 ZJD阜三段 2 0 0 2 100 0 QT阜三段 1 0 1 0 0 100 ZC垛一段 7 0 2 5 71 29 合计 48 5 11 32 67 33 表 3 注CO2区块水平井见气见效情况
Table 3 Flooding effect and gas production in horizontal wells in CO2 flooding block
区块及层位 井数/口 见效井
占比,%不见效井
占比,%油井 见气不
见效不见气
不见效见气
见效CN泰州组 2 1 1 0 0 100 CN阜一段 2 2 0 0 0 100 TN阜三段 2 2 0 0 0 100 HL阜三段 1 0 0 1 0 0 ZJD阜三段 7 2 3 2 29 71 QT阜三段 7 4 1 2 29 71 合计 21 11 5 5 24 76 表 4 注CO2水平井压裂后见气见效情况
Table 4 Flooding effect and gas production of CO2 flooding in fractured horizontal wells
区块及层位 井数/口 见效井
占比,%不见效井
占比,%油井 见气不
见效不见气
不见效见气
见效CN阜一段 1 1 0 0 0 100 TN阜三段 2 2 0 0 0 100 ZJD阜三段 5 2 3 0 0 100 QT阜三段 7 4 1 2 29 71 合计 15 9 4 2 13 87 表 5 注CO2未压裂水平井见气见效情况
Table 5 Flooding effect and gas production of CO2 flooding in non-fractured horizontal wells
区块及层位 井数/口 见效井
占比,%不见效井
占比,%油井 见气不
见效不见气
不见效见气
见效CN泰州组 2 1 1 0 0 100 CN阜一段 1 1 0 0 0 100 HL阜三段 1 0 0 1 100 0 ZJD阜三段 2 0 0 2 100 0 合计 6 2 1 3 50 50 表 6 苏北盆地注CO2见效井日产油量统计
Table 6 Statistics on the oil production of wells with effective CO2 flooding in the Subei Basin
采油井名 日产油量/t 单井日增油量/t 增油倍比 注气前 注气见效后 T111-1 0.44 1.09 0.65 1.48 TP5 0.98 2.86 1.88 1.92 T6 1.05 3.29 2.24 2.13 C32 1.35 2.60 1.25 1.93 H5P1 1.43 4.23 2.80 1.96 C34 1.56 3.90 2.34 2.50 CZ1–9 1.57 3.80 2.23 1.42 T11 1.58 3.32 1.74 2.10 CZ1–9 1.60 3.90 2.30 1.44 T7 1.65 4.61 2.96 2.79 CN2 1.68 5.90 4.22 2.51 CQK–118 1.83 3.81 1.98 1.08 CZ2 2.00 4.09 2.09 2.05 CZ1–4 2.24 4.60 2.36 1.05 ZH1–2 2.25 5.98 3.73 1.66 Z6 2.25 6.30 4.05 1.80 C14 2.40 5.30 2.90 1.21 S15–18 2.59 5.97 3.38 1.31 C18 2.69 5.51 2.82 1.05 Q101–1HF 2.71 4.86 2.15 0.79 CZ1–3 3.05 4.82 1.77 1.58 CZ1–6 3.20 6.90 3.70 1.16 ZH1–4 3.90 8.33 4.43 1.14 CQK–14 4.96 10.00 5.04 1.02 Q1–20 5.83 8.55 2.72 0.47 ZH1–6 6.86 14.70 7.84 1.14 QK–26 7.20 14.95 7.75 1.08 ZH3-XIE1 8.64 15.07 6.43 1.74 平均 2.84 6.04 3.21 1.30 -
[1] 钟张起,吴义平,付艳丽,等. 低渗透油藏CO2驱注入方式优化[J]. 特种油气藏, 2012, 19(1): 82–84. doi: 10.3969/j.issn.1006-6535.2012.01.019 ZHONG Zhangqi, WU Yiping, FU Yanli, et al. Injection optimization in CO2 flooding for low permeability reservoir[J]. Special Oil and Gas Reservoirs, 2012, 19(1): 82–84. doi: 10.3969/j.issn.1006-6535.2012.01.019
[2] 唐人选,唐小立,秦红祥. 注CO2混相驱油藏合理采收率确定[J]. 石油钻探技术, 2012, 40(3): 112–115. doi: 10.3969/j.issn.1001-0890.2012.03.023 TANG Renxuan, TANG Xiaoli, QIN Hongxiang. Determination of reasonable recovery ratio with CO2 miscible flooding in reservoir[J]. Petroleum Drilling Techniques, 2012, 40(3): 112–115. doi: 10.3969/j.issn.1001-0890.2012.03.023
[3] 宋道万. 二氧化碳混相驱数值模拟结果的主要影响因素[J]. 油气地质与采收率, 2008, 15(4): 72–74. doi: 10.3969/j.issn.1009-9603.2008.04.022 SONG Daowan. Main factors affecting numerical simulation results of carbon dioxide miscible flooding[J]. Petroleum Geology and Recovery Efficiency, 2008, 15(4): 72–74. doi: 10.3969/j.issn.1009-9603.2008.04.022
[4] 吴忠宝,甘俊奇,曾倩. 低渗透油藏二氧化碳混相驱油机理数值模拟[J]. 油气地质与采收率, 2012, 19(3): 67–70. doi: 10.3969/j.issn.1009-9603.2012.03.018 WU Zhongbao, GAN Junqi, ZENG Qian. Numerical simulation of mechanism of CO2 mixed flooding in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(3): 67–70. doi: 10.3969/j.issn.1009-9603.2012.03.018
[5] 王欢,廖新维,赵晓亮. 特低渗透油藏注 CO2驱参数优化研究[J]. 西南石油大学学报(自然科学版), 2014, 36(6): 95–104. doi: 10.11885/j.issn.1674-5086.2012.08.30.03 WANG Huan, LIAO Xinwei, ZHAO Xiaoliang. Research on CO2 flooding parameters optimization of extra-low permeability reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(6): 95–104. doi: 10.11885/j.issn.1674-5086.2012.08.30.03
[6] 王觉民,蒋华全. 水平井对各类油气藏的适应性分析[J]. 图书与石油科技信息, 1993, 7(4): 29–41. WANG Juemin, JIANG Huaquan. Adaptability analysis of horizontal wells to various oil and gas reservoirs[J]. Library & Petroleum Science-Technology Information, 1993, 7(4): 29–41.
[7] 庄永涛,刘鹏程,郝明强,等. 低渗透油藏CO2驱井网模式数值模拟[J]. 断块油气田, 2013, 20(4): 477–480. ZHUANG Yongtao, LIU Pengcheng, HAO Mingqiang, et al. Numerical simulation of well pattern mode for CO2 flooding in low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2013, 20(4): 477–480.
[8] 谢尚贤,韩培慧,钱昱. 大庆油田萨南东部过渡带注CO2驱油先导性矿场试验研究[J]. 油气采收率技术, 1997, 4(3): 13–19. XIE Shangxian,HAN Peihui,QIAN Yu. Pilot field test of CO2 injection for oil displacement in the eastern transitional zone of Sanan, Daqing Oilfield[J]. Oil and Gas Recovery Technology, 1997, 4(3): 13–19.
[9] 俞凯, 刘伟, 陈祖华, 等.陆相低渗透油藏CO2混相驱技术[M].北京: 中国石化出版社, 2015: 7–146. YU Kai, LIU Wei, CHEN Zuhua, et al. CO2 miscible flooding technology in continental low permeability reservoirs[M]. Beijing: China Petrochemical Press, 2015: 7–146.
-
期刊类型引用(33)
1. 肖沣峰,杨丽丽,吴家乐,冯尚江,邱士鑫,蒋官澄. 蓖麻油基环保水性聚氨酯成膜剂CWPU. 钻井液与完井液. 2025(02): 201-208 . 百度学术
2. 宋瀚轩,叶艳,郑连杰,孙振玮,周童,张謦文. 钻井液微纳米封堵性能评价方法研究进展. 应用化工. 2024(02): 383-385 . 百度学术
3. 李成,李伟,王波,张文哲,李锦锋,王军,常世豪. 微纳米孔缝封堵评价方法研究进展与展望. 科技通报. 2023(01): 18-24+31 . 百度学术
4. 孙志刚,李骏函,孙明杰,张茂稳,王立锋. 梨树断陷致密承压封堵钻井液技术研究. 广州化工. 2023(04): 186-188 . 百度学术
5. 李雨洋. 钻井液封堵性能对泥页岩井壁稳定的影响研究. 石化技术. 2023(05): 148-150 . 百度学术
6. 侯杰,谷玉堂,刘兴君,李浩东,李细鸿. 太阳页岩气田海坝区块安全钻进钻井液技术. 采油工程. 2023(01): 44-49+84 . 百度学术
7. 尹家峰,王晓军,鲁政权,步文洋,孙磊,景烨琦,孙云超,闻丽. 辽河大民屯凹陷页岩油储层强封堵恒流变油基钻井液技术. 特种油气藏. 2023(04): 163-168 . 百度学术
8. 付毓伟,罗兵,叶政蔚,肖鹏. 水基钻井液用泥页岩抑制剂研究探讨. 石化技术. 2023(11): 177-179 . 百度学术
9. 潘永强,张坤,于兴东,王洪月,陈赓,李浩东. 松辽盆地致密油水平井提速技术研究与应用. 石油工业技术监督. 2023(12): 33-38 . 百度学术
10. 侯杰,尹华洲,刘兴君,杨斯超. 钻采工程钻井液概算编制方法优化设计. 采油工程. 2023(04): 62-64+76 . 百度学术
11. 司西强,王中华,吴柏志. 中国页岩油气水平井水基钻井液技术现状及发展趋势. 精细石油化工进展. 2022(01): 42-50 . 百度学术
12. 徐志勇. 高性能水基钻井液技术研究进展. 西部探矿工程. 2022(05): 76-77+79 . 百度学术
13. 崔磊,董明,石昌森,郭金玉,李艳军,李英武. 高性能仿油基钻井液在L26-PX井的应用. 西部探矿工程. 2022(07): 68-69+73 . 百度学术
14. 何剑平. 水基钻井液用泥页岩抑制剂研究现状. 西部探矿工程. 2022(08): 83-84+87 . 百度学术
15. 徐浩,谢鑫,唐玉华,王媛媛,金晶. 疏水型高性能水基钻井液在YC1侧水平井中的应用研究. 精细石油化工进展. 2022(04): 6-10 . 百度学术
16. 施连海,李春吉. 威HX-4井水平段钻进技术研究与应用. 辽宁化工. 2022(11): 1647-1649+1653 . 百度学术
17. 殷柏涛. 大庆油田致密油藏钻井液技术发展历程. 西部探矿工程. 2022(10): 103-105+108 . 百度学术
18. 王伟吉. 基于石墨烯修饰的超低渗透成膜剂制备及性能评价. 石油钻探技术. 2021(01): 59-66 . 本站查看
19. 盛勇,叶艳,朱金智,宋瀚轩,张震,周广旭,王涛. 内核纳米乳液用于塔西南地区钻井液的优化. 钻井液与完井液. 2021(02): 170-175 . 百度学术
20. 侯杰,李浩东,于兴东,杨决算. 松辽盆地陆相致密油井壁失稳机理及钻井液对策. 钻井液与完井液. 2021(05): 598-604 . 百度学术
21. 李发华. 大庆油田中浅层水平井水基钻井液技术研究与应用. 西部探矿工程. 2020(03): 121-124 . 百度学术
22. 荣鹏飞. 高性能钻井液技术在大庆QP-X5井中的应用. 西部探矿工程. 2020(03): 71-73 . 百度学术
23. 王晓军,白冬青,孙云超,李晨光,鲁政权,景烨琦,刘畅,蒋立洲. 页岩气井强化封堵全油基钻井液体系——以长宁—威远国家级页岩气示范区威远区块为例. 天然气工业. 2020(06): 107-114 . 百度学术
24. 左富银,苏俊霖,李立宗,赵洋,曾意晴. 有机纳米封堵剂的研究现状及存在问题分析. 化学世界. 2020(11): 733-737 . 百度学术
25. 左富银,苏俊霖,黄进军,李立宗,赵洋,秦祖海. 泥页岩微裂缝微观封堵模拟. 化学世界. 2020(12): 822-828 . 百度学术
26. 高锐. 大庆油田致密油藏开发钻井提速技术浅析. 石油工业技术监督. 2019(01): 54-57 . 百度学术
27. 曾文韬,许明标,由福昌. 泥页岩纳—微米微孔隙封堵评价方法. 能源与环保. 2019(03): 73-76+160 . 百度学术
28. 刘卫东,朱晓虎,蒋文海,樊萍,王悦和,都炳锋. 页岩微裂缝模拟实验评价. 钻采工艺. 2019(02): 104-107+7 . 百度学术
29. 苗立生. 强抑制强封堵水基钻井液在大庆致密油藏的应用. 西部探矿工程. 2019(06): 93-96 . 百度学术
30. 吴迪. 超低压地层防漏堵漏技术研究与应用. 西部探矿工程. 2019(06): 103-106 . 百度学术
31. 张仁彪. 大庆中浅层低成本水基钻井液技术研究与应用. 石油石化节能. 2019(07): 11-14+2 . 百度学术
32. 刘永贵. 大庆致密油藏水平井高性能水基钻井液优化与应用. 石油钻探技术. 2018(05): 35-39 . 本站查看
33. 杨丽,唐清明,兰林,夏海英,牛静,黄璜. 一种页岩封堵性评价测试方法. 钻井液与完井液. 2018(05): 50-54 . 百度学术
其他类型引用(7)