长庆油田同心验封测调一体化分层注水技术

杨玲智, 刘延青, 胡改星, 申晓莉, 毕福伟

杨玲智, 刘延青, 胡改星, 申晓莉, 毕福伟. 长庆油田同心验封测调一体化分层注水技术[J]. 石油钻探技术, 2020, 48(2): 113-117. DOI: 10.11911/syztjs.2020023
引用本文: 杨玲智, 刘延青, 胡改星, 申晓莉, 毕福伟. 长庆油田同心验封测调一体化分层注水技术[J]. 石油钻探技术, 2020, 48(2): 113-117. DOI: 10.11911/syztjs.2020023
YANG Lingzhi, LIU Yanqing, HU Gaixing, SHEN Xiaoli, BI Fuwei. Stratified Water Injection Technology of Concentric Seal-Check, Logging and Adjustment Integration in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 113-117. DOI: 10.11911/syztjs.2020023
Citation: YANG Lingzhi, LIU Yanqing, HU Gaixing, SHEN Xiaoli, BI Fuwei. Stratified Water Injection Technology of Concentric Seal-Check, Logging and Adjustment Integration in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 113-117. DOI: 10.11911/syztjs.2020023

长庆油田同心验封测调一体化分层注水技术

基金项目: 中国石油与天然气股份公司科技攻关项目“长庆油田5000万吨持续高效稳产关键技术研究与应用”课题10“低渗油藏控水稳油工艺技术研究与试验”(编号:2016E-0510)资助
详细信息
    作者简介:

    杨玲智(1986—),男,吉林白山人,2009年毕业于中国石油大学(北京)石油工程专业,2012年获西南石油大学油气田开发工程专业硕士学位,现从事油田注水工具研发及低渗透油田水驱相关技术研究。E-mail:ylzh_cq@petrochina.com.cn

  • 中图分类号: TE357.6+2

Stratified Water Injection Technology of Concentric Seal-Check, Logging and Adjustment Integration in Changqing Oilfield

  • 摘要:

    为了提高长庆油田定向井小水量分层注水的测试效率、降低作业强度及测试成本,研究了同心验封测调一体化分层注水技术及关键工具。该技术采用机电一体化控制方法,利用电缆控制井下测试仪器进行验封及测试调节工作;借鉴离合器的工作原理,将电动直读验封仪与同心电动测调仪集成为验封测调一体化仪器,不仅使其具有验封仪、测调仪的功能,而且还进一步提高了仪器的集成化、自动化程度。该技术在长庆油田430余口井进行了应用,一趟作业完成全井验封、测调等全部工序,测调成功率达到98.0%,单层测调误差小于10.0%,单井验封测试时间由6~8 h缩短至4 h以内,单井年作业费用降低0.96万元。同心验封测调一体化分层注水技术为低渗透油藏低成本开发提供了一种新的技术手段。

    Abstract:

    In order to improve the test efficiency and to reduce the operation intensity and test cost of stratified water injection technology with small water volume in directional wells of Changqing Oilfield, the stratified water injection technology and key tools of concentric seal-check, logging and adjustment integration were studied. Mechatronics control method was adopted and the downhole test instrument was controlled by cable to carry out the seal-check, logging and adjustment. According to the principle of mechanical clutch structure, existing electric seal-check device was integrated with concentric electric measuring and adjusting instrument, the proposed technology further improved the degree of integration and automation with the functions of early seal-check device and measuring and adjusting instrument. The technology has been applied to more than 430 wells in Changqing Oilfield with one-trip operation completing the whole process of seal-check, measurement and adjustment. The success rate of logging and adjustment was up to 98.0%, and the logging and adjustment error of single layer was less than 10%. The average test duration of single well seal-check has been reduced from 6-8 hours to 4 hours, and the annual operation cost of single well was reduced by 9,600 yuan. The successful development of the stratified water injection technology of concentric seal-check, logging and adjustment integration could provide a new and high-efficiency test method for developing low permeability reservoirs in a cost-saving way.

  • 图  1   验封测调一体化仪器的基本结构

    1. 电缆接头;2. 超声波流量计;3. 扶正器;4. 磁定位短节;5. 控制模块;6. 电机;7. 定位爪;8. 验封离合机构;9. 皮碗;10. 测调离合机构;11. 调节爪

    Figure  1.   Basic structure of seal-check, logging and adjusting integration instrument

    图  2   一体化配水器的基本结构

    1.上接头;2.定位防反转机构;3.出水口;4.配水器主体;5.同心活动筒;6.扶正机构;7.下接头

    Figure  2.   Basic structure of integrated water distributor

    图  3   桥式通道的基本结构

    Figure  3.   Basic structure of bridge-type channel

    图  4   一体化配水器性能检测装置

    Figure  4.   Detection device of integrated water distributor

    图  5   S56-011井分层测调曲线

    Figure  5.   Stratified logging and adjustment curve of Well S56-011

  • [1] 刘合,裴晓含,罗凯,等. 中国油气田开发分层注水工艺技术现状与发展趋势[J]. 石油勘探与开发, 2013, 12(6): 733–737. doi: 10.11698/PED.2013.06.13

    LIU He, PEI Xiaohan, LUO Kai, et al. Current status and trend of separated layer water flooding in China[J]. Petroleum Exploration and Development, 2013, 12(6): 733–737. doi: 10.11698/PED.2013.06.13

    [2] 耿海涛,肖国华,宋显民,等. 同心测调一体分注技术研究与应用[J]. 断块油气田, 2013, 20(3): 406–408.

    GENG Haitao, XIAO Guohua, SONG Xianmin, et al. Research and application of concentric testing and regulating in separate layer injection[J]. Fault-Block Oil & Gas Field, 2013, 20(3): 406–408.

    [3] 宋显民,张立民,张宇辉,等. 分层定量注水分层测压一体技术[J]. 石油钻采工艺, 2016, 38(4): 526–530.

    SONG Xianmin, ZHANG Limin, ZHANG Yuhui, et al. Integrated technology of separate-layer quantitative water flooding and pressure monitoring[J]. Oil Drilling & Production Technology, 2016, 38(4): 526–530.

    [4] 夏健,杨春林,谭福俊,等. 华北油田分层注水技术现状与展望[J]. 石油钻采工艺, 2015, 37(2): 74–78.

    XIA Jian, YANG Chunlin, TAN Fujun, et al. Current status and prospect of zonal water injection technology in Huabei Oilfield[J]. Oil Drilling & Production Technology, 2015, 37(2): 74–78.

    [5] 于九政,巨亚锋,郭方元. 桥式同心分层注水工艺的研究与试验[J]. 石油钻采工艺, 2015, 37(5): 92–94.

    YU Jiuzheng, JU Yafeng, GUO Fangyuan. Research and experiment on bridge concentric separated layer water injection technology[J]. Oil Drilling & Production Technology, 2015, 37(5): 92–94.

    [6] 于九政,杨玲智,毕福伟. 南梁油田桥式同心分层注水技术研究与应用[J]. 钻采工艺, 2016, 39(5): 30–32. doi: 10.3969/J.ISSN.1006-768X.2016.05.10

    YU Jiuzheng, YANG Lingzhi, BI Fuwei. Research on bridge type concentric layer water injection in Nanliang Oilfield and its application[J]. Drilling & Production Technology, 2016, 39(5): 30–32. doi: 10.3969/J.ISSN.1006-768X.2016.05.10

    [7] 孙召勃,李云鹏,贾晓飞,等. 基于驱替定量表征的高含水油田注水井分层配注量确定方法[J]. 石油钻探技术, 2018, 46(2): 87–91.

    SUN Zhaobo, LI Yunpeng, JIA Xiaofei, et al. A method to determine the layered injection allocation rates for water injection wells in high water cut oilfield based on displacement quantitative characterization[J]. Petroleum Drilling Techniques, 2018, 46(2): 87–91.

    [8] 刘红兰. 分层注水井测调一体化新技术[J]. 石油钻探技术, 2018, 46(1): 83–89.

    LIU Honglan. A new integrated measuring and adjusting technology of separate layer water injection well[J]. Petroleum Drilling Techniques, 2018, 46(1): 83–89.

    [9] 刘红兰. 胜利海上油田安全可控长效分层注水技术[J]. 石油钻探技术, 2019, 47(1): 83–89. doi: 10.11911/syztjs.2018149

    LIU Honglan. Safe and controllable long-term layered water injection technology for the Shengli offshore oilfield[J]. Petroleum Drilling Techniques, 2019, 47(1): 83–89. doi: 10.11911/syztjs.2018149

    [10] 李汉周,彭太祥,郭振杰,等. 连续薄夹层油藏细分注水技术研究与应用[J]. 特种油气藏, 2019, 26(2): 164–169. doi: 10.3969/j.issn.1006-6535.2019.02.030

    LI Hanzhou, PENG Taixiang, GUO Zhenjie, et al. Subdivision water injection and its application in continuous thin interbedded reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 164–169. doi: 10.3969/j.issn.1006-6535.2019.02.030

    [11] 杨玲智,于九政,王子建,等. 桥式同心分层压降测试仪器研制与试验[J]. 石油机械, 2017, 45(6): 96–98.

    YANG Lingzhi, YU Jiuzheng, WANG Zijian, et al. Development and test of bridge concentric separate layer pressure testing device[J]. China Petroleum Machinery, 2017, 45(6): 96–98.

    [12] 于九政,郭方元,巨亚锋. 桥式同心配水器的研制与试验[J]. 石油机械, 2013, 41(9): 88–90. doi: 10.3969/j.issn.1001-4578.2013.09.022

    YU Jiuzheng, GUO Fangyuan, JU Yafeng. Development and test of bridge concentric water distributor[J]. China Petroleum Machinery, 2013, 41(9): 88–90. doi: 10.3969/j.issn.1001-4578.2013.09.022

    [13] 于九政,巨亚锋,杨玲智. 同心电动井下测调仪的研制与应用[J]. 石油机械, 2016, 44(2): 77–79, 83.

    YU Jiuzheng, JU Yafeng, YANG Lingzhi. Development and application of concentric electric downhole measuring and regulating instrument[J]. China Petroleum Machinery, 2016, 44(2): 77–79, 83.

    [14] 马奎前,陈存良,刘英宪. 基于层间均衡驱替的注水井分层配注方法[J]. 特种油气藏, 2019, 26(4): 109–112.

    MA Kuiqian, CHEN Cunliang, LIU Yingxian. Separate-layer water injection allocation based on inter-layer balanced waterflooding[J]. Special Oil & Gas Reservoirs, 2019, 26(4): 109–112.

  • 期刊类型引用(19)

    1. 马龙,杨森,罗立帆,刘桓竭. 考虑钻柱动力学的PDC钻头破岩动态特性. 机械设计与研究. 2025(01): 76-82 . 百度学术
    2. 黄明泉. 页岩气三维水平井剖面设计技术. 江汉石油职工大学学报. 2024(01): 45-47 . 百度学术
    3. 孙钢,姜政华,解赤栋. 隆页5-1HF一级井身结构攻关研究. 石化技术. 2024(03): 42-44 . 百度学术
    4. 王纪伟,宋丽阳,康玉柱,魏海鹏,陈刚,李东晖. 中美典型常压页岩气开发对比与启示. 特种油气藏. 2024(04): 1-9 . 百度学术
    5. 毕开原. 我国页岩气钻完井关键技术现状及发展趋势. 石油机械. 2024(11): 12-20+28 . 百度学术
    6. 施赵南,高斐. 力-化耦合作用下水化坍塌周期研究. 科技创新与应用. 2023(13): 71-74 . 百度学术
    7. 庄艳君. 安场页岩气井眼轨道优化与地质导向技术. 科技资讯. 2023(10): 131-136 . 百度学术
    8. 姚红生,王伟,何希鹏,郑永旺,倪振玉. 南川复杂构造带常压页岩气地质工程一体化开发实践. 油气藏评价与开发. 2023(05): 537-547 . 百度学术
    9. 姚红生,房启龙,袁明进,张壮. 渝东南常压页岩气工程工艺技术进展及下一步攻关方向. 石油实验地质. 2023(06): 1132-1142 . 百度学术
    10. 王运海,贺庆,朱智超,龙志平,彭兴,曹建山. 渝东南南川地区常压页岩气示范井应用评价及推广效果. 石油实验地质. 2023(06): 1160-1169 . 百度学术
    11. 蔡勋育,周德华,赵培荣,张华,钱恪然,万成祥. 中国石化深层、常压页岩气勘探开发进展与展望. 石油实验地质. 2023(06): 1039-1049 . 百度学术
    12. 张露,张玉胜,江波,王希勇,朱化蜀,张继尹. DY3-1HF常压页岩气水平井低成本钻井技术. 西部探矿工程. 2021(07): 89-91 . 百度学术
    13. 邓媛,何世明,邓祥华,彭远春,何世云,汤明. 力化耦合作用下的层理性页岩气水平井井壁失稳研究. 石油钻探技术. 2020(01): 26-33 . 本站查看
    14. 夏海帮. 页岩气井双暂堵压裂技术研究与现场试验. 石油钻探技术. 2020(03): 90-96 . 本站查看
    15. 耿朝辉. 我国页岩气钻井新技术及新工艺的研究与应用. 中国石油和化工标准与质量. 2019(07): 185-186 . 百度学术
    16. 孔令豪,何世明,汤明,袁兰峰,张光福. 考虑钻柱屈曲的环空压降计算. 断块油气田. 2019(03): 375-379 . 百度学术
    17. 赵景芳,刘雪婧,耿铁. BIO–OIL环保基液的研制与现场试验. 石油钻探技术. 2019(03): 75-81 . 本站查看
    18. 朱亮,楼一珊,沈建中,贺庆,秦杜. 南川页岩气田岩石抗钻特性参数分布规律研究及应用. 油气藏评价与开发. 2019(05): 84-88 . 百度学术
    19. 蔡世荣,任克雄. 宜昌地区页岩气勘探开发前景及开发模式探析. 国土资源情报. 2019(09): 46-51 . 百度学术

    其他类型引用(2)

图(5)
计量
  • 文章访问数:  1494
  • HTML全文浏览量:  476
  • PDF下载量:  69
  • 被引次数: 21
出版历程
  • 收稿日期:  2019-06-23
  • 修回日期:  2019-12-17
  • 网络出版日期:  2020-01-05
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回