青海共和盆地干热岩压裂裂缝测斜仪监测研究

周健, 曾义金, 陈作, 张保平, 徐胜强

周健, 曾义金, 陈作, 张保平, 徐胜强. 青海共和盆地干热岩压裂裂缝测斜仪监测研究[J]. 石油钻探技术, 2021, 49(1): 88-92. DOI: 10.11911/syztjs.2020139
引用本文: 周健, 曾义金, 陈作, 张保平, 徐胜强. 青海共和盆地干热岩压裂裂缝测斜仪监测研究[J]. 石油钻探技术, 2021, 49(1): 88-92. DOI: 10.11911/syztjs.2020139
ZHOU Jian, ZENG Yijin, CHEN Zuo, ZHANG Baoping, XU Shengqiang. Research on Fracture Mapping with Surface Tiltmeters for “Hot Dry Rock” Stimulation in Gonghe Basin, Qinghai[J]. Petroleum Drilling Techniques, 2021, 49(1): 88-92. DOI: 10.11911/syztjs.2020139
Citation: ZHOU Jian, ZENG Yijin, CHEN Zuo, ZHANG Baoping, XU Shengqiang. Research on Fracture Mapping with Surface Tiltmeters for “Hot Dry Rock” Stimulation in Gonghe Basin, Qinghai[J]. Petroleum Drilling Techniques, 2021, 49(1): 88-92. DOI: 10.11911/syztjs.2020139

青海共和盆地干热岩压裂裂缝测斜仪监测研究

基金项目: 国家重点研发计划课题“压裂监测与人工裂隙网络评价(编号:2018YFB1501803)”部分研究内容
详细信息
    作者简介:

    周健(1979—),男,江苏镇江人,2003年毕业于江苏工业学院过程装备与控制工程专业,2008年获中国石油大学(北京)油气井工程专业博士学位,高级工程师,主要从事水力压裂、岩石力学和裂缝监测等方面的研究工作。E-mail:zhouj.sripe@sinopec.com。

Research on Fracture Mapping with Surface Tiltmeters for “Hot Dry Rock” Stimulation in Gonghe Basin, Qinghai

  • 摘要: 为了更好地认识青海共和盆地增强型地热系统(EGS)压裂裂缝的方位和长度,指导该盆地换热井井位部署,优化压裂设计,采用地面测斜仪监测了X1井3个压裂阶段的裂缝,获得了该井3个压裂阶段形成垂直裂缝的长度和方位,并将监测结果与目的层地质特征结合,分析了共和盆地目标地层天然裂隙对裂缝复杂性的影响。研究表明,X1井目的层的天然裂隙在压裂过程中被部分激活,造成压裂裂缝的水平分量接近50%,在一定程度上提高了压裂裂缝的复杂性,从而提高了热储裂缝的换热体积。这为今后青海共和盆地干热岩井压裂优化设计和换热井井位部署提供了科学依据。
    Abstract: The three stages of hydraulic fracturing treatment in Well X1 were monitored from surface tilt mapping to better understand the fracture azimuth and length in the Gonghe Basin with enhanced geothermal systems (EGS), which would provide reference data in later deployment of adjacent wells and fracturing design. The fracture length and azimuth of Well X1 in the three stages of fracturing were obtained, and the mapping results were combined with geological features to analyze the impact of natural fractures on hydraulic fractures complexity in the target layers. The results demonstrated that some natural fractures are activated in the treatment and horizontal components of fractures are approximate to 50%, which will largely increase the complexity and heat transfer area of the fracture system. This research can provide a reference for fracturing optimization and the deployment of adjacent wells for geothermal development in Gonghe Basin of Qinghai Province.
  • 图  1   测斜仪监测垂直裂缝的原理示意

    Figure  1.   Tilt mapping principle of vertical fractures

    图  2   X1井岩心柱状图[4]

    Figure  2.   Core histogram of Well X1[4]

    图  3   X1井地面测斜仪的实际分布

    Figure  3.   Distribution of surface tiltmeters of Well X1

    图  4   X1井压裂第1阶段裂缝监测结果

    Figure  4.   Fracture mapping results of Well X1 in the first fracturing stage

    图  5   X1井压裂第2阶段裂缝监测结果

    Figure  5.   Fracture mapping results of Well X1 in the second fracturing stage

    图  6   X1井压裂第3阶段裂缝监测结果

    Figure  6.   Fracture mapping results of Well X1 in the third fracturing stage

    表  1   X1井3个压裂阶段垂直裂缝的监测结果

    Table  1   Mapping results of vertical fractures during three fracturing stages of Well X1

    压裂
    阶段
    裂缝
    方位
    裂缝
    倾角
    半缝长/
    m
    缝高/
    m
    压裂液
    体积/m3
    液体进入
    垂直缝
    比例,%
    第1阶段NE28.73°SE29.38°81.0051.00163.5048
    第2阶段NE43.50°SE60.00°76.2051.00190.6153
    第3阶段NE22.32°SE60.00°76.2064.00330.1058
    下载: 导出CSV
  • [1]

    BROWN D. The US hot dry rock program-20 years of experience in reservoir testing: proceedings of World Geothermal Congress, Flo-rence, May 18-31, 1995[C].

    [2] 许天福,袁益龙,姜振蛟,等. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报(地球科学版),2016,46(4):1139–1152.

    XU Tianfu, YUAN Yilong, JIANG Zhenjiao, et al. Hot dry rock and enhanced geothermal engineering: international experience and China prospect[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1139–1152.

    [3] 曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术,2015,43(2):1–7.

    ZENG Yijin. Technical progress and thinking for development of hot dry rock(HDR) geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2): 1–7.

    [4] 张森琦,严维德,黎敦朋,等. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质,2018,45(6):1087–1102.

    ZHANG Senqi, YAN Weide, LI Dunpeng, et al. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. Geology in China, 2018, 45(6): 1087–1102.

    [5] 张盛生,张磊,田成成,等. 青海共和盆地干热岩赋存地质特征及开发潜力[J]. 地质力学学报,2019,25(4):501–508. doi: 10.12090/j.issn.1006-6616.2019.25.04.048

    ZHANG Shengsheng, ZHANG Lei, TIAN Chengcheng, et al. Occurrence geological characteristics and development potential of hot dry rocks in Qinghai Gonghe Basin[J]. Journal of Geomechanics, 2019, 25(4): 501–508. doi: 10.12090/j.issn.1006-6616.2019.25.04.048

    [6] 谢文苹,路睿,张盛生,等. 青海共和盆地干热岩勘查进展及开发技术探讨[J]. 石油钻探技术,2020,48(3):77–84. doi: 10.11911/syztjs.2020042

    XIE Wenping, LU Rui, ZHANG Chengsheng, et al. Progress in hot dry rock exploration and a discussion on development technology in the Gonghe Basin of Qinghai[J]. Petroleum Drilling Techniques, 2020, 48(3): 77–84. doi: 10.11911/syztjs.2020042

    [7] 唐显春,王贵玲,马岩,等. 青海共和盆地地热资源热源机制与聚热模式[J]. 地质学报,2020,94(7):2052–2065. doi: 10.3969/j.issn.0001-5717.2020.07.013

    TANG Xianchun, WANG Guiling, MA Yan, et al. Geological model of heat source and accumulation for geothermal anomalies in the Gonghe Basin, Northeastern Tibetan Plateau[J]. Acta Geologica Sinica, 2020, 94(7): 2052–2065. doi: 10.3969/j.issn.0001-5717.2020.07.013

    [8] 郑宇轩,单文军,赵长亮,等. 青海共和干热岩GR1井钻井工艺技术[J]. 地质与勘探,2018,54(5):1038–1045.

    ZHENG Yuxuan, SHAN Wenjun, ZHAO Changliang, et al. The drilling technology for the GR1 Well in hot-dry rock of Gonghe, Qinghai Province[J]. Geology and Exploration, 2018, 54(5): 1038–1045.

    [9]

    SUN R J. Theoretical size of hydraulically induced horizontal fractures and corresponding surface uplift in an idealized medium[J]. Journal of Geophysical Research, 1969, 74(25): 5995–6011. doi: 10.1029/JB074i025p05995

    [10]

    WRIGHT C A, DAVIS E J, MINNER W A, et al. Surface tiltmeter fracture mapping reaches new depths–10 000 feet, and beyond[R]. SPE 39919, 1998.

    [11] 唐梅荣,张矿生,樊凤玲. 地面测斜仪在长庆油田裂缝测试中的应用[J]. 石油钻采工艺,2009,31(3):107–110. doi: 10.3969/j.issn.1000-7393.2009.03.027

    TANG Meirong, ZHANG Kuangsheng, FAN Fengling. Application of surface tiltmeter fracture mapping in Changqing Oilfield[J]. Oil Drilling & Production Technology, 2009, 31(3): 107–110. doi: 10.3969/j.issn.1000-7393.2009.03.027

    [12] 修乃岭,王欣,梁天成,等. 地面测斜仪在煤层气井组压裂裂缝监测中的应用[J]. 特种油气藏,2013,20(4):147–150. doi: 10.3969/j.issn.1006-6535.2013.04.038

    XIU Nailing, WANG Xin, LIANG Tiancheng, et al. Application of surface tiltmeter in fracturing fractures surveillance for CBM well group[J]. Special Oil & Gas Reservoirs, 2013, 20(4): 147–150. doi: 10.3969/j.issn.1006-6535.2013.04.038

    [13]

    YOSHIMITSU OKADA. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1992, 82(2): 1018–1040.

    [14] 周健,张保平,李克智,等. 基于地面测斜仪的“井工厂”压裂裂缝监测技术[J]. 石油钻探技术,2015,43(3):71–75.

    ZHOU Jian, ZHANG Baoping, LI Kezhi, et al. Fracture monitoring technology based on surface tiltmeter in “Well Factory” fracturing[J]. Petroleum Drilling Techniques, 2015, 43(3): 71–75.

  • 期刊类型引用(9)

    1. 李勇,陈峰,卢艳,梁聪,孙瑞涛,史健博,康桂蓉. 可调式节流喷嘴多规格内割刀水循环试验研究. 石油机械. 2024(08): 85-91+140 . 百度学术
    2. 李国勇,师静静,张文飞,李有龙. 高含水期井下分层采油管柱封隔器压力测试技术创新. 粘接. 2023(05): 122-125 . 百度学术
    3. 陈超峰,张一军,李强,杨晓儒,陈锐,杜宗和. 高温高压储层“光油管”试油压裂一体化工艺. 石油钻探技术. 2023(03): 113-118 . 本站查看
    4. 孟胡,申颍浩,朱万雨,李小军,雷德荣,葛洪魁. 四川盆地昭通页岩气水平井水力压裂套管外载分析. 特种油气藏. 2023(05): 166-174 . 百度学术
    5. 毛军,郭肖,庞伟. 高温高压气密封测试封隔器研发及现场试验. 石油钻探技术. 2023(06): 71-76 . 本站查看
    6. 韩永亮,王玥,张华,周后俊,任正军,徐敏. K344型可溶辅助解封压裂封隔器研制与应用. 油气井测试. 2022(03): 34-38 . 百度学术
    7. 郭妍杉. 我国页岩气压裂技术发展现状及相关政策建议. 中国能源. 2022(02): 52-60 . 百度学术
    8. 陈勇,李陈,卢齐,刘眉伶,温馨. 气体驱动中途测试封隔器研制. 钻采工艺. 2022(03): 114-118 . 百度学术
    9. 柳军,杜智刚,牟少敏,王睦围,张敏,殷腾,俞海,曹大勇. 连续油管分簇射孔管柱通过能力分析模型及影响因素研究. 特种油气藏. 2022(05): 139-148 . 百度学术

    其他类型引用(1)

图(6)  /  表(1)
计量
  • 文章访问数:  751
  • HTML全文浏览量:  161
  • PDF下载量:  101
  • 被引次数: 10
出版历程
  • 收稿日期:  2020-08-25
  • 修回日期:  2020-12-28
  • 网络出版日期:  2021-01-04
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回