Rapid Sinusoidal Fitting Method for Near-Bit Gamma Imaging While Drilling
-
摘要:
针对现有随钻测井数据传输速率较低的问题和井下实时获取伽马成像图的需求,模拟分析了近钻头伽马成像测井仪器穿过倾斜界面进入高放射性泥岩层的扇区成像特征,提出了基于扇区伽马成像图的快速正弦曲线拟合方法。设计了近钻头伽马成像测井中的快速正弦曲线拟合固件算法,将最小二乘估计算法和三参数正弦拟合相结合,提取得到正弦曲线的幅度、频率、相位和直流分量等4个参数,为拟合反演形成多扇区伽马成像图提供数据。利用快速正弦曲线拟合方法,测试了用标准岩样构造分层倾斜地层模拟井眼采集的伽马数据,实现了多扇区伽马成像测量值的拟合,且拟合误差较小。研究结果表明,拟合反演得到的8扇区伽马成像图的正弦曲线特征明显,能够准确反映倾斜地层界面信息,验证了快速正弦曲线拟合方法的可行性和正确性。
Abstract:Seeking to solve the problem of low transmission rate of existing LWD data and the demands on real-time gamma imaging, sector gamma-ray imaging characteristics were simulated and analyzed. This occurred while a near bit gamma-ray imaging tool crossing inclined interface moving from low-level radioactive sandstone to high-level radioactive mudstone, and thus a rapid sinusoidal fitting method based on the sector gamma imaging was proposed. Based on the studies, a rapid sinusoidal fitting firmware algorithm for near-bit gamma imaging logging was designed. This algorithm combined the least squares frequency estimation and 3-parameter sine fitting to obtain the 4 parameters of the sinusoid, such as amplitude, frequency, phase and DC component, hence obtaining the multi-sector gamma imaging through fitting inversion. By using the fast sinusoidal fitting method, the gamma data was acquired in the simulated wellbore fabricated with the standard rock samples and layered dipping strata, and the fitting of multi-sector gamma imaging measurement was realized with a small fitting error. The results showed that the sinusoidal features of the 8-sector gamma image obtained by fitting inversion were clear and they could accurately reflect the information of the inclined strata interface, which verified the correctness and feasibility of the fast sinusoidal fitting method.
-
Keywords:
- logging while drilling /
- gamma-ray imaging /
- near bit /
- sector /
- inclined interface /
- sinusoid /
- fitting method
-
-
-
[1] 马永生,蔡勋育,赵培荣. 石油工程技术对油气勘探的支撑与未来攻关方向思考: 以中国石化油气勘探为例[J]. 石油钻探技术, 2016, 44(2): 1–9. MA Yongsheng, CAI Xunyu, ZHAO Peirong. The support of petroleum engineering technologies in trends in oil and gas exploration and development: case study on oil and gas exploration in Sinopec[J]. Petroleum Drilling Techniques, 2016, 44(2): 1–9.
[2] 王敏生,光新军, 皮光林,等. 低油价下石油工程技术创新特点及发展方向[J]. 石油钻探技术, 2018, 46(6): 1–8. WANG Minsheng, GUANG Xinjun, PI Guanglin, et al. The characteristics of petroleum engineering technology design and innovation in a low oil price environment[J]. Petroleum Drilling Techniques, 2018, 46(6): 1–8.
[3] PITCHER J L, SCHAFER D B, BOTTERELL P, el al. A new azimuthal gamma at bit imaging tool for geosteering thin reservoirs[R]. SPE 118328, 2009.
[4] WHEELER A J, BILLINGS T, RENNIE A, et al. The introduction of an at-bit natural gamma ray imaging tool reduces risk associated with real-time geosteering decisions in coalbed methane horizontal wells[R]. SPWLA -2012-167, 2012.
[5] SUH A, JAMES B, FELTHAM G. Overcoming complex geosteering challenges in the Cardium Reservoir of the Foothills of Canada to increase production using an instrumented mud motor with near bit azimuthal gamma ray and inclination[R]. SPE 173036, 2015.
[6] MINETTE D C. Method for analyzing formation data from a formation evaluation MWD logging tool: US5091644[P]. 1992-02-25.
[7] SPROSS R L. Methods for determining characteristics of earth formations: US6619395B2[P]. 2003–09–16.
[8] BITTAR M, CHEMALI R, MORYS M, et al. The " depth-of-electrical image” a key parameter in accurate dip computation and geosteering[R]. SPWLA-2008-TT, 2008.
[9] McKINNY K, BOONEN P, HUISZOON C. Analysis of density image dip angle calculations[R]. SPWLA-2008-ZZ, 2008.
[10] 袁超,周灿灿,张锋,等. MC模拟在随钻方位伽马成像正演中的应用[J]. 原子核物理评论, 2014, 31(4): 505–510. doi: 10.11804/NuclPhysRev.31.04.505 YUAN Chao, ZHOU Cancan, ZHANG Feng, et al. Application of Monte Carlo method in forward simulation of azimuthal gamma imaging while drilling[J]. Nuclear Physics Review, 2014, 31(4): 505–510. doi: 10.11804/NuclPhysRev.31.04.505
[11] WANG Jiaxin, HUISZOON C, XU Libai, et al. Quantitative study of natural Gamma ray depth of image and dip angle calculations[R]. SPWLA-2013-BBB, 2013.
[12] 卢俊强,鞠晓东,乔文孝, 等. 数字信号处理器在随钻声波测井仪中的应用[J]. 测井技术, 2013, 37(5): 527–530. doi: 10.3969/j.issn.1004-1338.2013.05.014 LU Junqiang, JU Xiaodong, QIAO Wenxiao, et al. Application of digital signal processor to acoustic LWD tool[J]. Well Logging Technology, 2013, 37(5): 527–530. doi: 10.3969/j.issn.1004-1338.2013.05.014
[13] LEONARD Z S, RAHMAN S, STEINSIEK R R, el al. Development of transducer and electronics technology for an LWD ultrasonic imaging tool[R]. OTC 27758, 2017.
[14] IEEE Std 1057–1994 IEEE standard for digitizing waveform recorders[S].
[15] IEEE Std 1057–2017 IEEE standard for digitizing waveform recorders[S].