A Logging Data-Based Calculation Method for the Horizontal TIV Formation In-Situ Stress
-
摘要:
低孔低渗地层常具有TIV各向异性特征,准确计算水平地应力对该类储层的射孔和压裂设计至关重要。为了更加准确地计算TIV地层的水平地应力,针对该类地层的低压特征,优选Bowers法求取地层孔隙压力,然后利用阵列声波测井资料求取TIV地层的岩石力学参数(垂直与水平方向上的杨氏弹性模量和泊松比);同时考虑层理面产状对水平地应力的影响,改进了传统的Sn模型,建立了TIV地层水平地应力新计算模型。用新模型计算了鄂尔多斯盆地合水地区长6、长7和长8段TIV地层的水平地应力,计算结果与实测最大、最小水平地应力的最大相对误差分别为8.70%和7.86%,低于Sn模型的相对误差。研究结果表明,新模型计算的水平地应力更符合实际地应力纵横向分布的变化规律,可为致密油储层的水力压裂设计提供更可靠的参考依据。
Abstract:Given the TIV anisotropy characteristics of low porosity/permeability formations, the accurate calculation of horizontal in-situ stress is essential for the perforation and fracturing designs of those reservoirs. In order to more accurately and effectively calculate the horizontal in-situ stress of a TIV formation, considering the low-pressure characteristics of such formation, the Bowers method was used to obtain the formation pore pressure. Then, the array acoustic logging data was used to obtain the anisotropic rock mechanical parameters (the vertical/ horizontal Young’s modulus of elasticity and Poisson's ratio) of TIV formation. Considering the influence of bedding plane occurrence on horizontal in-situ stress, the traditional Sn model was improved and a new calculation model for the horizontal in-situ stress of TIV formation was established. The horizontal in-situ stresses of the TIV formations in the Chang 6, Chang 7 and Chang 8 sections of the Heshui area of the Ordos Basin were calculated by this new model. The maximum relative errors between the calculated and the measured maximum/minimum horizontal in-situ stresses were 8.70% and 7.86%, respectively, which were smaller than those of in-situ stresses calculated by Sn model. The results showed that the horizontal in-situ stress calculated by this new model was more in line with the variation laws of the vertical and horizontal distributions of the actual in-situ stress, which could provide a more reliable reference for the hydraulic fracturing design of tight oil reservoirs.
-
-
表 1 最大、最小水平地应力实测值与模型计算值的对比
Table 1 Comparison of the measured and calculated values of the maximum/minimum horizontal in-situ stresses
井深/m 最大水平地应力/MPa 最大水平地应力相对误差,% 最小水平地应力/MPa 最小水平地应力相对误差,% 实测 新模型 Sn模型 新模型 Sn模型 实测 新模型 Sn模型 新模型 Sn模型 1 637.00 30.14 32.64 32.61 8.28 9.09 23.88 25.10 20.02 5.11 16.16 1 664.00 36.04 37.06 36.20 2.84 0.44 29.12 28.51 22.31 2.09 23.39 1 676.40 37.89 38.68 32.78 2.08 13.49 31.02 29.76 19.61 4.08 36.78 1 708.90 37.23 40.17 37.87 7.91 1.72 31.01 30.90 23.75 0.35 23.41 1 719.50 38.74 41.35 35.32 6.75 8.83 32.70 33.08 20.62 1.16 36.94 1 720.60 34.10 37.06 35.78 8.70 4.93 27.10 29.23 21.54 7.86 20.52 1 780.90 40.48 41.28 36.72 1.97 9.29 30.58 31.75 20.21 3.83 33.91 1 787.00 33.89 35.78 44.78 5.55 32.13 25.72 27.52 27.49 7.00 6.88 -
[1] 黄鑫,董秀成,肖春跃,等. 非常规油气勘探开发现状及发展前景[J]. 天然气与石油, 2012, 30(6): 38–41. HUANG Xin, DONG Xiucheng, XIAO Chunyue, et al. Present situation and development prospect of unconventional oil and gas exploration and development[J]. Natural Gas and Oil, 2012, 30(6): 38–41.
[2] 王越之,李自俊. 横向各向同性地层地应力的研究[J]. 石油学报, 1999, 34(1): 34–37. doi: 10.3321/j.issn:0253-2697.1999.01.007 WANG Yuezhi, LI Zijun. A study of in-situ stress in transversely isotropic formations[J]. Acta Petrolei Sinica, 1999, 34(1): 34–37. doi: 10.3321/j.issn:0253-2697.1999.01.007
[3] WATERS G A, HEINZE J R, JACKSON R, et al. Use of horizontal well image tools to optimize Barnett shale reservoir exploitation[R]. SPE103202, 2006.
[4] 姜梦奇.横向各向同性介质克希霍夫叠前深度偏移方法研究[D].青岛: 中国石油大学(华东), 2016. JIANG Mengqi. Study on Kirchhoff pre-stack depth migration method for transversely isotropic media[D]. Qingdao: China University of Petroleum(East China), 2016.
[5] 赵向原,曾联波,王晓东,等. 鄂尔多斯盆地宁县—合水地区长6、长7、长8储层裂缝差异性及开发意义[J]. 地质科学, 2015, 50(1): 274–285. doi: 10.3969/j.issn.0563-5020.2015.01.018 ZHAO Xiangyuan, ZENG Lianbo, WANG Xiaodong, et al. Differences of natural fracture characteristics and their development significance in Chang 6, Chang 7 and Chang 8 reservoir, Ningxian-Heshui area, Ordos Basin[J]. Scientia Geological Sinica, 2015, 50(1): 274–285. doi: 10.3969/j.issn.0563-5020.2015.01.018
[6] 刘忠华,宋连腾,王长胜,等. 各向异性快地层最小水平主应力测井计算方法[J]. 石油勘探与开发, 2017, 44(5): 745–752. LIU Zhonghua, SONG Lianteng, WANG Changsheng, et al. Evaluation method of the least horizontal principal stress by logging data in anisotropic fast formations[J]. Petroleum Exploration and Development, 2017, 44(5): 745–752.
[7] 黄荣樽,庄锦江. 一种新的地层破裂压力预测方法[J]. 石油钻采工艺, 1986, 8(3): 1–14. HUANG Rongzun, ZHUANG Jinjiang. A new method for predicting formation fracture pressure[J]. Oil Drilling & Production Technology, 1986, 8(3): 1–14.
[8] HIGGINS S M, GOODWIN S A, DONALD A, et al. Anisotropic stress models improve completion design in the Baxter Shale[R]. SPE 115736, 2008.
[9] 刘方,陈剑军. 地质统计学反演预测地层压力的方法[J]. 工业技术创新, 2015, 2(3): 366–369. LIU Fang, CHEN Jianjun. Formation pressure prediction with geostatistical inversion[J]. Industrial Technology Innovation, 2015, 2(3): 366–369.
[10] 杨振平,吴波,王勇. Eaton法预测M油田地层孔隙压力[J]. 石油天然气学报, 2012, 34(9): 181–182. YANG Zhenping, WU Bo, WANG Yong. Application of Eaton method in predicting the formation pore pressure of M Oilfield[J]. Journal of Oil and Gas Technology, 2012, 34(9): 181–182.
[11] BOWERS G L. Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion, 1995, 10(2): 89–95.
[12] 徐志星. 西湖凹陷异常地层压力特征及其与油气成藏的关系[D]. 成都: 成都理工大学, 2015. XU Zhixing. Abnormal formation pressure and its relationship with hydrocarbon accumulation in Xihu Sag[D]. Chengdu: Chengdu University of Technology, 2015.
[13] 夏宏泉,么勃卫,毕刚. 塔里木盆地致密砂岩气层异常高压的测井计算方法[J]. 测井技术, 2018, 42(4): 423–426. XIA Hongquan, YAO Bowei, BI Gang. Logging calculate method of abnormal high pressure in tight sandstone gas reservoirs in Tarim Basin[J]. Well Logging Technology, 2018, 42(4): 423–426.
[14] WANG Zhijing. Seismic anisotropy in sedimentary rocks, part 1: a single-plug laboratory method[J]. Geophysics, 2002, 67(5): 1415–1422. doi: 10.1190/1.1512787
[15] SAROUT J, MOLEZ L, GUEGUEN Y, et al. Shale dynamic pro-perties and anisotropy under triaxial loading: experimental and theoretical investigations[J]. Physics and Chemistry of the Earth, 2007, 32(8–14): 896–906. doi: 10.1016/j.pce.2006.01.007
[16] SUAREZ-RIVERA R, DEENADAYALU C, YANG Y K. Unlock-ing the unconventional oil and gas reservoirs: the effect of laminated heterogeneity in wellbore stability and completion of light gas shale reservoirs[R]. OTC 20269, 2009.
-
期刊类型引用(4)
1. 陈德春,张文宣,阳成,常峰,邴绍强,张鹏,王亮亮,马硕. 基于井口流体温度的含水率计算模型. 断块油气田. 2025(03): 514-521 . 百度学术
2. 魏锋,陈现,王迪,夏瑜. 海上少井条件下含水率计算方法研究及应用. 海洋石油. 2022(04): 63-66 . 百度学术
3. 王谦,谭茂金,石玉江,李高仁,程相志,罗伟平. 径向基函数神经网络法致密砂岩储层相对渗透率预测与含水率计算. 石油地球物理勘探. 2020(04): 864-872+704 . 百度学术
4. 王谦,石玉江,谭茂金,李高仁. 基于孔隙结构分类的致密砂岩含水率计算模型——以鄂尔多斯盆地陇东西部延长组长8_1储层为例. 石油物探. 2019(05): 669-680 . 百度学术
其他类型引用(5)